Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 24040024-12    https://doi.org/10.11896/cldb.24040024
  无机非金属及其复合材料 |
硝酸盐催化还原合成氨研究进展
苏友义1,†, 张明2,†, 陶雯艳3, 杨萍萍1,*, 郭星辰1, 邓徐1, 谢佳乐1,*
1 西南石油大学新能源与材料学院, 成都 610500
2 西南石油大学化学化工学院, 成都 610500
3 通威太阳能(成都)有限公司, 成都 610299
Recent Advances in Catalytic Nitrate Reduction for Ammonia Synthesis
SU Youyi1,†, ZHANG Ming2,†, TAO Wenyan3, YANG Pingping1,*, GUO Xingchen1, DENG Xu1, XIE Jiale1,*
1 School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
2 School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
3 Tongwei Solar Company, Chengdu 610299, China
下载:  全 文 ( PDF ) ( 33681KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氨是重要的化工原料和能源载体。传统的哈伯法制氨工艺需要高温高压条件,消耗大量能源且排放大量二氧化碳。近年来,利用常温常压催化技术将硝酸盐还原合成氨成为可持续合成氨的研究热点。本文首先概述了硝酸盐催化还原合成氨的反应机理,然后深入分析了光/电催化硝酸盐还原合成氨的研究进展。在电催化硝酸盐还原合成氨方面,重点讨论了催化剂改性方法及其在电催化还原硝酸盐过程中增强产氨性能的原因。接着,详细探讨了设计光电催化剂的策略,包括元素掺杂、异质结构建和缺陷工程,以提高催化效率和选择性。最后,总结了硝酸盐催化还原合成氨领域面临的挑战,例如提高反应动力学和改进催化剂稳定性,并展望了未来的发展方向。硝酸盐催化还原合成氨技术有望为氨的生产带来革命性变革,减少对传统高能耗工艺的依赖,降低环境负担,为可持续发展贡献力量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏友义
张明
陶雯艳
杨萍萍
郭星辰
邓徐
谢佳乐
关键词:  合成氨  硝酸盐  电催化  催化剂  反应机理    
Abstract: Ammonia is a crucial chemical feedstock and energy carrier. However, the conventional Haber-Bosch method for ammonia synthesis requires high temperature and high pressure, leading to significant energy consumption and substantial carbon dioxide emissions. In recent years, the research focus has shifted towards the sustainable synthesis of ammonia using catalytic technologies under ambient conditions, particularly the nitrate reduction to ammonia. This review provides an overview of the reaction pathways and mechanisms involved in catalytic nitrate reduction for ammonia synthesis. Then the recent advances in catalytic nitrate reduction for ammonia synthesis are analyzed in depth from the two aspects of electrocatalysis and photoelectrocatalysis. In the field of electrocatalytic nitrate reduction, the focus is on catalyst modification methods and the reasons for enhanced ammonia production performance during the nitrate reduction processes. Subsequently the strategies for designing photoelectrocatalysts for nitrate reduction for ammonia synthesis are thoroughly analyzed, including element doping, heterojunction construction, and defect engineering, aiming at enhancing catalytic efficiency and selectivity. This review finally summarizes the current challenges in catalytic nitrate reduction for ammonia synthesis, such as improving the reaction kinetics and enhancing catalyst stability, and discusses future prospects for the development of this technology. Catalytic nitrate reduction for ammonia synthesis holds promise for revolutionary changes in ammonia production, reducing reliance on conventional energy-intensive processes and mitigating environmental burdens, thereby contributing to sustainable development efforts.
Key words:  ammonia synthesis    nitrate    electrocatalysis    catalyst    reaction mechanism
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  O64  
基金资助: 2022年度四川省产教融合示范项目(川财教[2022]106号);四川省自然科学基金项目(2022NSFSC1272);西南石油大学启航计划项目(2021QHZ018)
通讯作者:  *杨萍萍,博士,助理研究员,硕士研究生导师。长期从事超级电容器相关领域的研究。pingpingyang@swpu.edu.cn;
谢佳乐,博士,副研究员,硕士研究生导师。长期从事低维纳米材料和光伏制氢等相关领域的研究。jialexie@swpu.edu.cn   
作者简介:  苏友义,西南石油大学新能源与材料学院硕士研究生,在谢佳乐副研究员的指导下进行研究。目前主要研究领域为光电催化制氢。张明,西南石油大学化学化工学院硕士研究生,在谢佳乐副研究员的指导下进行研究。目前主要研究领域为光电催化制氢。
†共同第一作者
引用本文:    
苏友义, 张明, 陶雯艳, 杨萍萍, 郭星辰, 邓徐, 谢佳乐. 硝酸盐催化还原合成氨研究进展[J]. 材料导报, 2025, 39(7): 24040024-12.
SU Youyi, ZHANG Ming, TAO Wenyan, YANG Pingping, GUO Xingchen, DENG Xu, XIE Jiale. Recent Advances in Catalytic Nitrate Reduction for Ammonia Synthesis. Materials Reports, 2025, 39(7): 24040024-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040024  或          https://www.mater-rep.com/CN/Y2025/V39/I7/24040024
1 Deng Y, Ye X, Du X. Journal of Hydrology, 2023, 624, 129934.
2 Kang J, Jeen S W. Environmental Science and Pollution Research, 2021, 28(27), 35738.
3 Chen J, Gu M, Zhou Y, et al. Chemical Engineering Journal, 2022, 430, 132952.
4 Rezvani F, Sarrafzadeh M H, Ebrahimi S, et al. Environmental Science and Pollution Research, 2019, 26(2), 1124.
5 Yang W, Wang J, Chen R, et al. Journal of Materials Chemistry A, 2022, 10(34), 17357.
6 Zhang X, Wang Y, Liu C, et al. Chemical Engineering Journal, 2021, 403, 126269.
7 Xie J, Wang L, Ren J, et al. Electrochimica Acta, 2022, 421, 140483.
8 Xie J, Wang L, Zhong C, et al. Materials Today Energy, 2023, 31, 101212.
9 Ren J, Yang P, Wang L, et al. Catalysts, 2023, 13(4), 727.
10 MacFarlane D R, Cherepanov P V, Choi J, et al. Joule, 2020, 4(6), 1186.
11 Chang F, Gao W, Guo J, et al. Advanced Materials, 2021, 33(50), 2005721.
12 Liu D, Qiao L, Peng S, et al. Advanced Functional Materials, 2023, 33(43), 2303480.
13 Garcia-Segura S, Lanzarini-Lopes M, Hristovski K, et al. Applied Catalysis B: Environmental, 2018, 236, 546.
14 Wu Y, Ding Y, Chen M, et al. Small, 2024, 20(52), 2408627.
15 Dong Y, Wu K, Yin Y, et al. Chemical Engineering Journal, 2022, 442, 136390.
16 Li H, Li G, Yang Z, et al. Materials Research Bulletin, 2025, 181, 113110.
17 Li S, Liu B, Tian H, et al. Composites Part A:Applied Science and Ma-nufacturing, 2025, 190, 108691.
18 Wang Z, Young S D, Goldsmith B R, et al. Journal of Catalysis, 2021, 395, 143.
19 Liu H, Timoshenko J, Bai L, et al. ACS Catalysis, 2023, 13(2), 1513.
20 Guo H, Li M, Yang Y, et al. Small, 2023, 19(10), 2207743.
21 Wang J, Cai C, Wang Y, et al. ACS Catalysis, 2021, 11(24), 15135.
22 Yang Y, Xu K, Ma X L. Progress in Chemistry, 2023, 35(4), 543 (in Chinese).
杨越, 续可, 马雪璐. 化学进展, 2023, 35(4), 543.
23 Xu X, Hu L, Li Z, et al. Sustainable Energy & Fuels, 2022, 6(18), 4130.
24 Wu X, Liu Z, Gao T, et al. Metals, 2023, 13(4), 799.
25 Deng Z, Ma C, Li Z, et al. ACS Applied Materials & Interfaces, 2022, 14(41), 46595.
26 Wei P, Liang J, Liu Q, et al. Journal of Colloid and Interface Science, 2022, 615, 636.
27 Liu D, Qiao L, Chen Y, et al. Applied Catalysis B:Environmental, 2023, 324, 122293.
28 Fan X, Liu C, Li Z, et al. Small, 2023, 19(42), 2303424.
29 Qiao L, Liu D, Zhu A, et al. Applied Catalysis B:Environmental, 2024, 340, 123219.
30 Pu Z, Liu T, Amiinu I S, et al. Advanced Functional Materials, 2020, 30(45), 2004009.
31 Ye S, Chen Z, Zhang G, et al. Energy & Environmental Science, 2022, 15(2), 760.
32 Jia Y, Ji Y G, Xue Q, et al. ACS Applied Materials & Interfaces, 2021, 13(38), 45521.
33 Hong Q L, Zhou J, Zhai Q G, et al. Chemical Communications, 2021, 57(88), 11621.
34 Yao Q, Chen J, Xiao S, et al. ACS Applied Materials & Interfaces, 2021, 13(26), 30458.
35 Chouki T, Machreki M, Rutkowska I A, et al. Journal of Environmental Chemical Engineering, 2023, 11(2), 109275.
36 Zhang N, Zhang G, Tian Y, et al. Dalton Transactions, 2023, 52(14), 4290.
37 Luo Y, Chen K, Wang G, et al. Inorganic Chemistry Frontiers, 2023, 10(5), 1543.
38 Liu X, Xu X, Li F, et al. ACS Applied Materials & Interfaces, 2022, 14(34), 38835.
39 Wang J, Sun Z, Li Y, et al. Journal of Alloys and Compounds, 2023, 955, 170199.
40 Pan F, Zhou J, Wang T, et al. Journal of Colloid and Interface Science, 2023, 638, 26.
41 Zhang S, Li M, Li J, et al. Proceedings of the National Academy of Sciences, 2022, 119(6), e2115504119.
42 Li G, Xue S, Zhu H, et al. Ionics, 2023, 29(6), 2515.
43 Wang J, Wang Y, Cai C, et al. Nano Letters, 2023, 23(5), 1897.
44 Wang J, Zhang S, Wang C, et al. Inorganic Chemistry Frontiers, 2022, 9(10), 2374.
45 Li J, Zhao D, Zhang L, et al. Journal of Colloid and Interface Science, 2023, 629, 805.
46 Zhao F, Hai G, Li X, et al. Chemical Engineering Journal, 2023, 461, 141960.
47 Xie L, Hu L, Liu Q, et al. Inorganic Chemistry Frontiers, 2023, 9(14), 3392.
48 Li Z, Liang J, Liu Q, et al. Materials Today Physics, 2022, 23, 100619.
49 Liu Q, Xie L, Liang J, et al. Small, 2022, 18(13), 2106961.
50 Wang G, Zhang Y, Chen K, et al. InorganicChemistry, 2023, 62(17), 6570.
51 Lv Y, Su J, Gu Y, et al. JACS Au, 2022, 2(12), 2765.
52 Qin J, Wu K, Chen L, et al. Journal of Materials Chemistry A, 2022, 10(8), 3963.
53 Zhang S, Chen D, Guo Y, et al. Materials Today, 2023, 66, 17.
54 Lin C, Chen X, Wang L, et al. Advanced Functional Materials, 2024, 34(36), 2401287.
55 Sun W, Ji H, Li L, et al. Angewandte Chemie International Edition, 2021, 60(42), 22933.
56 Chen F Y, Wu Z Y, Gupta S, et al. Nature Nanotechnology, 2022, 17(7), 759.
57 Fujihira M, Satoh Y, Osa T. Nature, 1981, 293(5829), 206.
58 Shen R, Ren D, Ding Y, et al. Science China Materials, 2020, 63(11), 2153.
59 Matamala-Troncoso F, Sáez-Navarrete C, Mejía-López J, et al. Surfaces and Interfaces, 2023, 37, 102751.
60 Wang F, Ding Q, Bai Y, et al. Inorganic Chemistry Frontiers, 2022, 9(4), 805.
61 Bai H, Wang F, Ding Q, et al. Inorganic Chemistry, 2023, 62(5), 2394.
62 Guo Y, Zhang R, Zhang S, et al. Energy & Environmental Science, 2021, 14(7), 3938.
63 Doudrick K, Yang T, Hristovski K, et al. Applied Catalysis B: Environmental, 2013, 136-137, 40.
64 Yamauchi M, Abe R, Tsukuda T, et al. Journal of the American Chemical Society, 2011, 133(5), 1150.
65 Walls J M, Sagu J S, Upul Wijayantha K G. RSC Advances, 2019, 9(11), 6387.
66 Liu L, Bai Y, Huang Z, et al. Inorganic Chemistry Frontiers, 2023, 10(7), 2060.
67 Bai Y, Gao S, Xie W, et al. International Journal of Hydrogen Energy, 2023, 48(29), 10882.
68 Hirakawa H, Hashimoto M, Shiraishi Y, et al. ACS Catalysis, 2017, 7(5), 3713.
69 Zhou S, Sun K, Toe C Y, et al. Advanced Materials, 2022, 34(29), 2201670.
70 Li X, Fan W, Bai Y, et al. Chemical Engineering Journal, 2021, 433, 133225.
71 Choi H, Peters A W, Noh H, et al. ACS Applied Energy Materials, 2019, 2(12), 8695.
72 Silveira V R, Bericat-Vadell R, Sá J. The Journal of Physical Chemistry C, 2023, 127(11), 5425.
73 Sheydaei M, Ayoubi-Feiz B. Journal of Water Process Engineering, 2021, 39, 101856.
74 Li C, Li K, Chen C, et al. Separation and Purification Technology, 2020, 237, 116485.
75 Gao W, Gao L, Li D, et al. Journal of Electroanalytical Chemistry, 2018, 817, 202.
76 Muñoz E, Schrebler R, Henríquez R, et al. Thin Solid Films, 2009, 518(1), 138.
77 Li J, Zhang Y, Liu C, et al. Advanced Functional Materials, 2022, 32(18), 2108316.
78 Li J, Chen R, Wang J, et al. Nature Communications, 2022, 13(1), 1098.
[1] 唐晓龙, 温佳俊, 刘媛媛, 王成志, 罗宁, 段二红, 周远松, 易红宏, 高凤雨. CoMn2O4/Ce-TiO2双功能催化剂SCR脱硝协同CO氧化性能研究[J]. 材料导报, 2025, 39(5): 24020126-7.
[2] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[3] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[4] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[5] 孙亚洲, 徐沙, 邹金含, 吴智华, 谢顺吉. 二氧化碳电催化还原酸性体系研究进展[J]. 材料导报, 2024, 38(8): 23040216-6.
[6] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[7] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[8] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[9] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[10] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[11] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[12] 高娜, 庞佩琦, 李智, 牟国栋, 崔天成, 杜贤龙, 李涛, 肖国萍. 电解工艺条件对Cu基催化剂电化学还原CO2的产物分布影响[J]. 材料导报, 2024, 38(24): 23100052-5.
[13] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[14] 刘睿琦, 孙善富, 程鹏飞, 王莹麟, 郝熙冬. 光/电催化废塑料升级再造高附加值化学品研究进展[J]. 材料导报, 2024, 38(20): 23060226-7.
[15] 朱文超, 张雷, 张亚洲, 李明清, 张建峰, 闵凡路. 碱性速凝剂对盾构壁后注浆浆体性能影响及微观机理研究[J]. 材料导报, 2024, 38(19): 23040077-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed