Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 24040081-9    https://doi.org/10.11896/cldb.24040081
  金属与金属基复合材料 |
药型罩材料技术研究进展
刘扬1,†, 范怡静2,†, 沈伟建2, 王睿鑫2, 陈进1, 唐宇2,*
1 西安近代化学研究所, 西安 710065
2 国防科技大学空天科学学院, 长沙 410073
Progress in the Materials for Shaped Charge Liners
LIU Yang1,†, FAN Yijing2,†, SHEN Weijian2, WANG Ruixin2, CHEN Jin1, TANG Yu2,*
1 Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
2 College of Aerospace Science and Engineering, National University of Defense and Technology, Changsha 410073, China
下载:  全 文 ( PDF ) ( 20046KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以药型罩为主要部件的聚能战斗部是小型智能飞行器打击装甲、地堡等目标的主要手段。本文基于药型罩的侵彻机理和“高穿深、大扩孔、强后效”的发展趋势,首先从药型罩的增效方式入手,综述了结构设计及惰性材料改性等传统方式的效果,并明确了传统增效方式在实现药型罩纵向和径向毁伤能力同步提升方面的不足;其次,对释能结构材料增强药型罩技术的研究现状进行了综述,通过相关研究说明了采用释能结构材料可有效增强药型罩综合毁伤威力,同时明确了传统释能结构材料在综合力学性能方面的不足;最后,介绍了多主元合金的基本概念及其在释能结构材料增强药型罩技术领域的应用潜力。本文既可为新一代高毁伤药型罩及其材料发展提供借鉴,也可为新型材料的应用提供新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘扬
范怡静
沈伟建
王睿鑫
陈进
唐宇
关键词:  药型罩  释能结构材料  侵彻  后效  高效毁伤  多主元合金    
Abstract: The shaped warhead, with the main component of shaped charge liner, is the primary means for drones to damage armor, bunkers, and other targets. The present review is based on the penetration mechanism of shaped charge liners and the development tendency of ‘high penetration, large reaming and strong aftereffect'. It first outlines the conventional methods such as structural designing and inert material modification for enhancing damage capabilities of shaped charge liners, and reveals the inadequacy of these conventional methods in simultaneously promoting longitudinal and lateral damage capability. It second describes the current research status of energetic structural materials for enhanced shaped charge liners, demonstrating their effectiveness in enhancing comprehensive damage effect while also clarifying their limitations in comprehensive mechanical properties. It finally states the basic concept of multi-principal element alloys and their applicative potential in energetic structural materials for shaped charge liners. This paper can not only serve as a reference for developing new generation high-damage shaped charge liner and materials but also provide new insight for their applicative research.
Key words:  shaped charge liner    energetic structural material    penetration    aftereffect    efficient damage    multi-principal element alloy
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TB31  
  O77  
基金资助: 国家自然科学基金(52171166)
通讯作者:  *唐宇,国防科技大学空天科学学院教授、博士研究生导师。主要从事高熵合金及其应用研究。tangyu16@nudt.edu.cn   
作者简介:  刘扬,西安近代化学研究所正高级工程师。主要从事新型战斗部设计和安全评估研究。范怡静,工学学士,国防科技大学材料科学与工程专业硕士研究生,从事高熵合金动态力学行为研究。
†共同第一作者
引用本文:    
刘扬, 范怡静, 沈伟建, 王睿鑫, 陈进, 唐宇. 药型罩材料技术研究进展[J]. 材料导报, 2025, 39(7): 24040081-9.
LIU Yang, FAN Yijing, SHEN Weijian, WANG Ruixin, CHEN Jin, TANG Yu. Progress in the Materials for Shaped Charge Liners. Materials Reports, 2025, 39(7): 24040081-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040081  或          https://www.mater-rep.com/CN/Y2025/V39/I7/24040081
1 Walters W P, Zukas J. Fundamentals of shaped charge, Interscience Publication, USA, 1989, pp.398.
2 Wang H F, Zheng Y F, Yu Q B. Physics of reactive liner enhanced shaped charge warheads, Beijing Institute of Technology Press, 2020, pp.5 (in Chinese).
王海福, 郑元枫, 余庆波. 活性毁伤增强聚能战斗部技术, 北京理工大学出版社, 2020, pp.5.
3 Xu W L, Wang C, Chen D P. International Journal of Impact Engineering, 2019, 132, 103336.
4 Munroe C E. American Journal of Science, 1888, 36(211), 48.
5 Esteban B, Lenhart L B, Rüdiger L, et al. International Journal of Protective Structures, 2015, 6(3), 439.
6 Cui P, Wang D S, Shi D M, et al. Materials, 2020, 4, 912.
7 Li J L, Jiang J W, Men J B, et al. Chinese Journal of High Pressure Physics, 2023, 36(1), 194 (in Chinese).
李金霖, 蒋建伟, 门建兵, 等. 高压物理学报, 2023, 36(1), 194.
8 Li S N, Zhang G W, Cui X J, et al. Ordnance Industry Automation, 2019, 38(4), 75 (in Chinese).
李松楠, 张国伟, 崔晓杰, 等. 兵工自动化, 2019, 38(4), 75.
9 An W T, Gao Y H, Zhou J, et al. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(1), 24 (in Chinese).
安文同, 高永宏, 周杰, 等. 弹箭与制导学报, 2020, 40(1), 24.
10 Ruan G G, Lei W, Yue J W, et al. Chinese Journal of Explosives & Propellants, 2018(1), 93 (in Chinese).
阮光光, 雷伟, 岳继伟, 等. 火炸药学报, 2018(1), 93.
11 Chen X, Li R J, Wan T Q, et al. Explosive Materials, 2015, 44(2), 58 (in Chinese).
陈兴, 李如江, 弯天琪, 等. 爆破器材, 2015, 44(2), 58.
12 Zheng Z M. Explosion and Shock Waves, 1981(1), 6 (in Chinese).
郑哲敏. 爆炸与冲击, 1981(1), 6.
13 Zheng Z M. Acta Armamentarii, 1980(1), 13 (in Chinese).
郑哲敏. 兵工学报, 1980(1), 13.
14 Xu H Q, Liu J X, Cai Q, et al. Materials & Design, 2022, 221, 110997.
15 Zhang X W, Xiao QQ, Huang Z X, et al. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(5), 1 (in Chinese).
张晓伟, 肖强强, 黄正祥, 等. 弹箭与制导学报, 2020, 40(5), 1.
16 Deng H, Li G, Liang Z, et al. International Journal of Multiphysics, 2022, 16(3), 261.
17 Fan X F, Li W B, Wang X M, et al. Acta Armamentarii, 2017, 38(10), 1918 (in Chinese).
樊雪飞, 李伟兵, 王晓鸣, 等. 兵工学报, 2017, 38(10), 1918.
18 Hu X B, Wang T Y, Wang J H, et al. Journal of Physics:Conference Series, 2023, 2478(12), 122060.
19 Yuan Z H, Wang J P, Li ZZ, et al. Ordnance Material Science and Engineering, 2016, 39(1), 73 (in Chinese).
袁志华, 王季鹏, 李政芝, 等. 兵器材料科学与工程, 2016, 39(1), 73.
20 He H M, Wang L X, Sun J, et al. Explosion and Shock Waves, 2013(S1), 28 (in Chinese).
贺海民, 王利侠, 孙建, 等. 爆炸与冲击, 2013(S1), 28.
21 Zhang T, Gao X M, Li J C, et al. Defence Technology, 2024, 31(1), 95.
22 Laszlo J K, William P W. In:Proceedings of the 23rd International Symposium on Ballistics. Tarragona, 2007, pp.31.
23 Daniels A S, Baker E L, DeFisher S E, et al. In:Proceedings of the 23rd International Symposium on Ballistics. Tarragona, Spain, 2007, pp.239.
24 Guo H G, Zheng Y F, He S, et al. Defence Technology, 2022, 1578.
25 Zhang X P, Wang Z J, Yin J P, et al. Materials, 2021, 14(13), 3701.
26 Liu W H, Liu Y B, Wu Y Z, et al. Journal of Ordnance Equipment Engineering, 2022(5), 114 (in Chinese).
刘文赫, 刘迎彬, 吴育智, 等. 兵器装备工程学报, 2022(5), 114.
27 Sun M, Li C, Zhang X, et al. Materials, 2018, 11, 2267.
28 Zhang Z. Study ondamage performance of W-Ni-Al reactive jet. Master's Thesis, North University of China, China, 2021 (in Chinese).
张增. W-Ni-Al反应射流侵彻性能研究. 硕士学位论文, 中北大学, 2021.
29 Han J, Chen X, Du Z. Materials Research Express, 2019, 6(11), 115209.
30 Shi Y X. Study on application of multi-principal amorphous alloy for energetic liner. Master's Thesis, Army Engineering University of PLA, China, 2017 (in Chinese).
石永相. 多元非晶合金含能材料药型罩应用研究. 硕士学位论文, 陆军工程大学, 2017.
31 Feng B, Li Y C, Wu S Z, et al. Materials & Design, 2016, 108, 411.
32 Ge C, Dong Y, Maimaitituersun W. Materials, 2016, 9(7), 590.
33 Wang L, Liu J X, Li S K, et al. Materials & Design, 2016, 92, 397.
34 Tang E L, He Z H, Chen C, et al. Composite Structures, 2020, 241, 112063.
35 Xu S L, Yang S Q, Zhao P D, et al. Chinese Journal of Theoretical and Applied Mechanics, 2009(5), 708 (in Chinese).
徐松林, 阳世清, 赵鹏铎, 等. 力学学报, 2009(5), 708.
36 Xu S L, Yang S, Zhang W. Journal of Physics:Condensed Matter, 2009, 28, 285401.
37 Zhao P D, Lu F Y, Li J L, et al. Chinese Journal of Energetic Materials, 2009(4), 459 (in Chinese).
赵鹏铎, 卢芳云, 等. 含能材料, 2009(4), 459.
38 Ding J, Zhu S G. Chinese Journal of Energetic Materials, 2023(8), 844 (in Chinese).
丁建, 朱顺官. 含能材料, 2023(8), 844.
39 Huang B Y, Xiong W, Zhang X F, et al. Chinese Journal of Energetic Materials, 2021(2), 149 (in Chinese).
黄炳瑜, 熊玮, 张先锋, 等. 含能材料, 2021(2), 149.
40 Zhou Q, Hu Q W, Wang B, et al. Journal of Alloys and Compounds, 2020, 832, 154894.
41 Hu Q W, Liu R, Zhou Q, et al. Materials Science and Engineering, 2022, 849, 143332.
42 Chen J, Yuan B, Liang Z, et al. In:2018 International Conference of Defense and Technology, Beijing, 2018, pp.603.
43 Zhao K X, Zhang X H, Gu X R, et al. Defence Technology, 2023, 25(7), 112.
44 Hu Q, Liu R, Zhou Q, et al. Journal of Alloys and Compounds, 2022, 924, 166191.
45 Panel N Q, Du Z H, Zhu Z W, et al. The Chinese Journal of Nonferrous Metals, 2016(5), 973 (in Chinese).
潘念侨, 杜忠华, 朱正旺, 等. 中国有色金属学报, 2016(5), 973.
46 Chen L, Zu X D, Huang Z X, et al. Journal of Ballistics, 2022(1), 65 (in Chinese).
陈亮, 祖旭东, 黄正祥, 等. 弹道学报, 2022(1), 65.
47 Ji C, He Y, Wang C T, et al. Journal of Non-Crystalline Solids, 2019, 515, 149.
48 Suryanarayana C. Progress in Materials Science, 2001, 46(1-2), 1.
49 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
50 Yeh J W. Journal of Metals, 2015, 67(10), 2254.
51 Tang Y, Wang R X, Li S, et al. Chinese Journal of Energetic Materials, 2021, 29(10), 1008 (in Chinese).
唐宇, 王睿鑫, 李顺, 等. 含能材料, 2021, 29(10), 1008.
52 Li W D, Xie D, Li D Y, et al. Progress in Materials Science, 2021, 118, 100777.
53 Chuang M H, Tsai M H, Wang W R, et al. Acta Materialia, 2011, 59(16), 6308.
54 Li Z, Pradeep K G, Deng Y, et al. Nature, 2016, 534(7606), 227.
55 Zhang W R, Liaw P K, Zhang Y. Science China-Materials, 2018, 61(1), 2.
56 Shi Y Z, Yang B, Xie X, et al. Corrosion Science, 2017, 119, 33.
57 Li G, Zhang Y F, Ma Y M, et al. Journal of Yanshan University, 2020, 44(4), 9 (in Chinese).
李工, 张翼飞, 马一墨, 等. 燕山大学学报, 2020, 44(4), 9.
58 George E P, Curtin W A, Tasan C C. Acta Materialia, 2020, 188, 435.
59 Wang H, He Q F, Gao X, et al. Advanced Materials, 2023, 36(17), 2305453.
60 Zhang Z R, Zhang H, Tang Y, et al. Materials & Design, 2017, 133, 435.
61 Li N, Wang R X, Zhao H B, et al. Materials Today Communications, 2022, 32, 103847.
62 Ren K R, Liu H, Chen R, et al. Materials Science and Engineering A, 2021, 827, 142074.
63 Jia S Z, Zhen J W, Du S G. Engineering Blasting, 2017, 23(6), 48 (in Chinese).
贾栓柱, 甄建伟, 杜仕国. 工程爆破, 2017, 23(6), 48.
64 He Y, Pan X C, He Y. In:International Conference on Mechanical Engineering and Mechanics. Wuxi, 2007, pp.1094.
65 Mao L, Ye S, Hu W X, et al. Acta Armamentarii, 2020, 41(10), 1962.
66 Chen J, Liu T W, Cao F H, et al. Metals, 2022, 5, 811.
67 宋佳星, 田权伟, 冯靖凯, 等. 中国专利, CN115200417A, 2022.
68 Zhao ZZ, Li T, Sheng D L, at al. Defence Technology, DOI:10.1016/j.dt.2024.04.006.
69 王本鹏, 王旭涛, 靳柯, 等. 中国专利, CN202210680795, 2022.
70 Wang C T, Hu X B, Ji C, et al. Journal of Physics:Conference Series, 2023, 2478(3), 032090.
71 Guo Y S, Liu R, Ran C, et al. Journal of Materials Research and Technology, 2024, 28, 2819.
[1] 丁来龙, 马明亮, 冯超, 黄微波, 王一凡, 林佳宇, 吴超. 聚脲材料的优化及抗爆抗侵彻性能研究进展[J]. 材料导报, 2025, 39(4): 24010082-9.
[2] 闫帅, 吕平, 黄微波, 张锐, 王旭, 王文斌, 鞠家辉. 喷涂聚脲及其纤维复合材料的抗侵彻性及防护机理研究新进展[J]. 材料导报, 2024, 38(19): 23040240-6.
[3] 姜安邦, 李典, 李永清, 侯海量. 偏转式抗侵彻防护技术研究现状[J]. 材料导报, 2023, 37(24): 22060150-9.
[4] 程平, 彭勇, 汪馗, 姚松, 刘志祥. 3D打印连续苎麻纤维增强聚乳酸复合材料的准静态侵彻性能[J]. 材料导报, 2023, 37(1): 22010088-6.
[5] 肖颍杰, 石少卿, 刘盈丰, 陈首, 廖瑜. 聚脲钢板复合层抗枪弹侵彻性能研究[J]. 材料导报, 2022, 36(23): 22010187-7.
[6] 郑成燕, 张典堂, 梁燕民, 钱坤. 织物/聚脲柔性复合材料抗爆性能研究进展[J]. 材料导报, 2021, 35(23): 23205-23211.
[7] 王东哲, 秦溶蔓, 孙娜, 杜明远, 腾凌虹, 曹伟伟, 朱波. 陶瓷/纤维复合装甲抗弹丸侵彻性能的试验与数值模拟研究[J]. 材料导报, 2021, 35(18): 18216-18221.
[8] 高妞, 刘鑫旺, 吴伟峰, 白朱成, 姚俊卿, 樊自田. 耐热高熵多主元合金及其强韧化研究现状[J]. 材料导报, 2021, 35(17): 17037-17042.
[9] 秦溶蔓, 朱波, 乔琨, 袁小敏. 陶瓷/纤维复合材料层间混杂结构对装甲板抗侵彻性能的影响[J]. 材料导报, 2020, 34(18): 18183-18187.
[10] 靳柯, 卢晨阳, 豆艳坤, 贺新福, 杨文. 高熵合金辐照损伤的实验研究进展[J]. 材料导报, 2020, 34(17): 17018-17030.
[11] 王雪姣, 乔珺威, 吴玉程. 高熵合金:面向聚变堆抗辐照损伤的新型候选材料[J]. 材料导报, 2020, 34(17): 17058-17066.
[12] 赵钦,马国政,王海斗,李国禄,陈书赢,周羊羊. 高熵合金涂层制备及其应用的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 65-71.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed