Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 24080117-5    https://doi.org/10.11896/cldb.24080117
  金属与金属基复合材料 |
柱塞泵关键摩擦副中复杂黄铜与硅锰黄铜的微观组织与耐磨特性研究
梅婷1, 徐洪扬2, 李逊1, 龙运伟1, 唐华1, 李志鹏2, 邹爱华2,*
1 中国航发贵州红林航空动力控制科技有限公司, 贵阳 550000
2 南昌航空大学材料科学与工程学院, 南昌 330063
Study on the Microorganization and Wear Resistance of Complex Brass and Silicon Manganese Brass in the Key Friction Pair of Plunger Pump
MEI Ting1, XU Hongyang2, LI Xun1, LONG Yunwei1, TANG Hua1, LI Zhipeng2, ZOU Aihua2,*
1 Air China Guizhou Honglin Aviation Power Control Technology Co.,Ltd., Guiyang 550000, China
2 School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
下载:  全 文 ( PDF ) ( 17782KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用金相显微镜、XRD、SEM和UMT摩擦磨损试验机等手段,对复杂黄铜(HAl61-4-3-1)和硅锰黄铜(HMn60-3-1-0.75)的显微组织和耐磨性能进行了研究。实验结果显示,HAl61-4-3-1及HMn60-3-1-0.75耐磨黄铜主要由α相、β相和强化相三相构成,其中α、β相的主要元素为Cu、Zn。复杂黄铜HAl61-4-3-1颗粒状强化相以Al、Co、Ni、Fe、Si为主。硅锰黄铜HMn60-3-1-0.75强化相为Mn5Si3。与HMn60-3-1-0.75相比,HAl61-4-3-1黄铜具有更高的硬度,较小的摩擦系数和磨损量,具体数值分别为181.3HV、0.177和1.13×10-3 g。这种差异主要是由于HAl61-4-3-1黄铜的基体硬度大于HMn60-3-1-0.75,在磨损时犁沟效应减轻,剥落和粘着程度也减小。通过对HAl61-4-3-1磨损形貌的分析认为,其主要的磨损形式为磨粒磨损和粘着磨损,并伴有少量的疲劳磨损与氧化磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梅婷
徐洪扬
李逊
龙运伟
唐华
李志鹏
邹爱华
关键词:  复杂黄铜  柱塞泵  显微组织  磨损    
Abstract: Using metallographic microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and a UMT tribological tester, the microstructure and wear resistance of complex brass (HAl61-4-3-1) and silicon-manganese brass (HMn60-3-1-0.75) were studied. The experimental results indicate that both HAl61-4-3-1 and HMn60-3-1-0.75 wear-resistant brass are mainly composed of three phases:needle-like α phase, β phase, and a strengthening phase, with copper (Cu) and zinc (Zn) as the primary components of the α and β phases. The particle-like strengthening phase in HAl61-4-3-1 wear-resistant brass is primarily composed of aluminum (Al), cobalt (Co), nickel (Ni), iron (Fe), and silicon (Si). In contrast, the strengthening phase in HMn60-3-1-0.75 wear-resistant brass is identified as needle-like Mn5Si3. Compared to HMn60-3-1-0.75, HAl61-4-3-1 brass exhibits higher hardness, lower friction coefficient, and reduced wear volume, with specific values of 181.3HV, 0.177, and 1.13×10-3 g, respectively. This difference is mainly due to the matrix hardness of HAl61-4-3-1 brass is greater than that of HMn 60-3-1-0.75. The furrow effect is reduced and the peeling and adhesion is reduced. Through the analysis of HAl61-4-3-1 wear morphology, its main wear forms are grinding and adhesive wear, with a small amount of fatigue and oxidative wear.
Key words:  complex brass    plunger pump    microscopic structure    wear
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TG146.1+1  
基金资助: 江西省重点研发计划项目(2019ZBBE50001);企事业单位委托项目(科技字[2022]第17号)
通讯作者:  *邹爱华,博士,南昌航空大学材料科学与工程学院副教授。从事航空金属材料组织及性能调控研究。aihua553030@163.com   
作者简介:  梅婷,工程硕士,中国航发贵州红林航空动力控制科技有限公司高级工程师、三级技术专家,长期从事航空发动机材料技术及应用研究等相关工作。
引用本文:    
梅婷, 徐洪扬, 李逊, 龙运伟, 唐华, 李志鹏, 邹爱华. 柱塞泵关键摩擦副中复杂黄铜与硅锰黄铜的微观组织与耐磨特性研究[J]. 材料导报, 2025, 39(7): 24080117-5.
MEI Ting, XU Hongyang, LI Xun, LONG Yunwei, TANG Hua, LI Zhipeng, ZOU Aihua. Study on the Microorganization and Wear Resistance of Complex Brass and Silicon Manganese Brass in the Key Friction Pair of Plunger Pump. Materials Reports, 2025, 39(7): 24080117-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080117  或          https://www.mater-rep.com/CN/Y2025/V39/I7/24080117
1 Gholami M, Vesely J, Altenberger I, et al. Journal of Alloys and Compounds, 2017, 696, 201.
2 Li H, Jie J, Liu S, et al. Materials Science and Engineering:A, 2017, 704, 45.
3 He Y X, Qian S W, Gong Q, et al. World Non-ferrous Metals, 2021(2), 35(in Chinese).
何雨星, 钱斯文, 龚庆, 等. 世界有色金属, 2021(2), 35.
4 Zhang W Q, Yu R J, Xu J F, et al. Journal of Ningbo Institute of Engineering, 2019, 31(2), 9(in Chinese).
张伟樯, 余荣积, 徐金富, 等. 宁波工程学院学报, 2019, 31(2), 9.
5 Waheed A, Ridley N. Journal of Materials Science, 1994, 29(6), 1692.
6 Xu L, Lu Y, Liu Q, et al. Journal of Failure Analysis and Prevention, 2022, 22(2), 738.
7 Schuhler G, Jourani A, Bouvier S, et al. Journal of Materials Engineering and Performance, 2018, 27, 5395.
8 Ma J M, Huang Y H, Guo J, et al. Chinese Hydraulics & Pneumatics, 2017, 15(8), 84.
9 Meng J J, Han Z Y, Liu B L. Hydraulics Pneumatic & Seals, 2018, 3, 70.
10 Tang H S, Li J, Yin Y B. Machine Tool & Hydraulics, 2016, 44(9), 153.
11 Bie L, Chen X, Liu P, et al. Metals and Materials International, 2020, 26, 431.
12 Li H, Jie J, Liu S, et al. Materials Science and Engineering:A, 2017, 704, 45.
13 Pierce D T, Jiménez J A, Bentley J, et al. Acta Materialia, 2014, 68, 238.
14 Liu Y, Dong Z, Yu L, et al. Journal of Materials Research, 2014, 29(23), 2809.
15 Fang W, Fang Q, Chang R B, et al. Mechanical Engineering Materials, 2018, 42(7), 32(in Chinese).
方伟, 方前, 常若斌, 等. 机械工程材料, 2018, 42(7), 32.
16 Chen Y S, Fu Z, Zhu Z Y, et al. Non-ferrous Metals Science and Engineering, 2012(5), 23(in Chinese).
陈一胜, 傅政, 朱志云, 等. 有色金属科学与工程, 2012(5), 23.
17 Wang X S, Zhou B, Dai J Y, et al. Materials Reports, 2021, 35(20), 20124(in Chinese).
王雪松, 周兵, 戴姣燕, 等. 材料导报, 2021, 35(20), 20124.
18 Huang S H, Feng W, Chao G H, et al. Shanghai Nonferrous Metals, 2015(4), 173(in Chinese).
黄绍辉, 冯卫, 巢国辉, 等. 上海有色金属, 2015(4), 173.
19 Liu H F, Zhang M X, Guo C. Modern Manufacturing Technology and Equipment, 2024(8), 22(in Chinese).
刘洪峰, 张孟欣, 郭超. 现代制造技术与装备, 2024(8), 22.
[1] 黄晗冰, 王培, 乔石, 马如龙, 郝振华, 舒永春, 何季麟. Cu-0.9Be-1.5Ni-0.04Y合金的摩擦磨损与电化学腐蚀性能研究[J]. 材料导报, 2025, 39(7): 24010241-8.
[2] 谭会杰, 王海燕, 华连庚, 高雪云, 吕萌, 于大威, 邢磊. 稀土Ce对Fe-Ni-Al马氏体时效钢等温过程显微组织演变的影响[J]. 材料导报, 2025, 39(7): 24010236-6.
[3] 谢浩民, 李光明, 胡凌越, 毛飞雄, 宫克. 载荷和电位对Ti-6Al-3Nb-2Zr-1Mo合金在海水中腐蚀磨损行为的影响[J]. 材料导报, 2025, 39(6): 24010227-11.
[4] 姚通睿, 王曼, 席晓丽. 含Al耐热合金高温氧化行为研究现状[J]. 材料导报, 2025, 39(6): 24050040-10.
[5] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[6] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[7] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[8] 齐顺顺, 王文健, 汪渊, 丁昊昊. 贝氏体钢轨磨损与接触疲劳行为的研究进展[J]. 材料导报, 2025, 39(1): 23090020-11.
[9] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[10] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[11] 张而耕, 刘江, 蔡远飞, 梁丹丹, 陈强, 周琼, 黄彪. Cr掺杂对TiAlN涂层的择优取向和摩擦性能的影响机理[J]. 材料导报, 2024, 38(24): 23080252-6.
[12] 程立宏, 周裕琦, 王建峰, 李柱, 穆战, 占小红. 焊丝成分对国产Invar合金GTAW接头组织差异性的影响[J]. 材料导报, 2024, 38(23): 23080151-6.
[13] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[14] 范依航, 李政译, 郝兆朋. 切削镍基高温合金Ni、Fe、Cr原子在WC-Co硬质合金刀具中的扩散机制及对刀具性能的影响[J]. 材料导报, 2024, 38(23): 23070211-9.
[15] 李迎春, 杨更生, 杨明宣, 邱明, 范恒华. 调制周期对磁控溅射Cr/类石墨碳多层膜腐蚀-磨损性能的影响[J]. 材料导报, 2024, 38(21): 23070129-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed