Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24110232-8    https://doi.org/10.11896/cldb.24110232
  高分子与聚合物基复合材料 |
碎石封层用树脂基改性乳化沥青调控制备及性能
王朝辉1,*, 马健云1, 张志强2, 张莹2, 陈绍昌1
1 长安大学公路学院,西安 710064
2 太行城乡建设集团有限公司,石家庄 050200
Preparation and Performance of Resin-based Modified Emulsified Asphalt for Chip Seal
WANG Chaohui1,*, MA Jianyun1, ZHANG Zhiqiang2, ZHANG Ying2, CHEN Shaochang1
1 School of Highway, Chang’an University, Xi’an 710064, China
2 Taihang Urban and Rural Construction Group Co., Ltd., Shijiazhuang 050200, China
下载:  全 文 ( PDF ) ( 21348KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对碎石封层层间粘结、抗水损、耐久等服役性能亟待进一步提升的问题,调控制备了WER(水性环氧树脂)-WPU-Ⅰ(阴离子型水性聚氨酯)、WER-WPU-Ⅱ(非离子型水性聚氨酯)、WER-SBR(丁苯橡胶胶乳)、WPU-Ⅰ-SBR、WER-WPU-Ⅱ-SBR、WER-WPU-Ⅱ-EVA(乙烯-醋酸乙烯共聚物乳液)六种树脂基改性乳化沥青。探明了水性树脂类型及掺量对乳化沥青干燥时间、粘结、抗冲击、与集料黏附、拉伸、低温弯曲和防水抗渗性能的影响,确定了碎石封层用树脂基改性乳化沥青最佳材料组成及配比,揭示了水性树脂聚合物改性乳化沥青机理,评价了树脂基改性乳化沥青碎石封层集料抗剥落性能与防水抗渗性能。结果表明:树脂基改性乳化沥青25 ℃实干时间为65~95 min,其蒸发残留物拉拔强度达1.26 MPa,-20 ℃冲击强度达5.68 kJ/m2,且弯曲180°不开裂。建议碎石封层选用WER-WPU-Ⅰ和WER-WPU-Ⅱ-SBR改性乳化沥青,水性树脂掺量宜为15%,此时水性树脂在乳化沥青中分布均匀。在90%~110%碎石覆盖率下WER-WPU-Ⅰ改性乳化沥青集料抗剥落性能与防水抗渗性能略优于WER-WPU-Ⅱ-SBR改性乳化沥青,两种碎石封层湿轮磨耗后质量损失率均小于15%且不透水。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王朝辉
马健云
张志强
张莹
陈绍昌
关键词:  道路工程  碎石封层  改性乳化沥青  水性聚合物  调控制备  性能    
Abstract: Addressing the urgent need for enhancement in interlayer adhesion, water damage resistance, and durability of chip seals, six types of resin-based modified emulsified asphalt—WER (waterborne epoxy resin)-WPU-I (anionic waterborne polyurethane), WER-WPU-II (non-ionic waterborne polyurethane), WER-SBR (polymerized styrene butadiene rubber), WPU-I-SBR, WER-WPU-II-SBR, and WER-WPU-II-EVA (ethy-lene vinyl acetate copolymer)— were prepared. The effects of water-based resin types on the drying time, adhesion, impact resistance, aggregate adhesion, tensile strength, low-temperature bending, and water resistance of emulsified asphalt were investigated. The optimal material composition and ratio of resin-base modified emulsified asphalt were determined. The modification mechanism of water-based resin polymers on emulsified asphalt was revealed. The anti-stripping and water resistance of the resin-modified emulsified asphalt chip seals were evaluated. The results indicate that the resin-modified emulsified asphalt has a practical drying time of 65—95 minutes at 25 ℃. The tensile strength of evaporation residues is 1.26 MPa.The impact strength is 5.68 kJ/m2 at -20 ℃, without cracking upon bending to 180°. WER-WPU-I and WER-WPU-II-SBR modified emulsified asphalts are recommended for chip seals, with an optimal water-based resin dosage of 15%. The water-based resin is evenly distributed in the emulsified asphalt at this case. Under 90%—110% stone coverage, the WER-WPU-I modified emulsified asphalt exhibits slightly better anti-stripping and water resistance than WER-WPU-II-SBR, with both chip seals showing mass loss rates below 15% and impermeability after wet wheel abrasion testing.
Key words:  road engineering    chip seal    modified emulsified asphalt    water-based polymer    controlled preparation    performance
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  U416.21  
  TB332  
基金资助: 国家自然科学基金(52378429);陕西省创新能力支撑计划(2022TD-07);太行城乡建设集团有限公司科技项目(KT-2)
通讯作者:  *王朝辉,博士,长安大学公路学院教授、博士研究生导师,主要从事绿色智能型道路新材料与新技术的开发及应用研究工作。wchh0205@chd.edu.cn   
引用本文:    
王朝辉, 马健云, 张志强, 张莹, 陈绍昌. 碎石封层用树脂基改性乳化沥青调控制备及性能[J]. 材料导报, 2025, 39(23): 24110232-8.
WANG Chaohui, MA Jianyun, ZHANG Zhiqiang, ZHANG Ying, CHEN Shaochang. Preparation and Performance of Resin-based Modified Emulsified Asphalt for Chip Seal. Materials Reports, 2025, 39(23): 24110232-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110232  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24110232
1 Wang C H, Chen Q, Li Y W, et al. China Journal of Highway and Transport, 2024, 37(10), 1 (in Chinese).
王朝辉, 陈谦, 李彦伟, 等. 中国公路学报, 2024, 37(10), 1.
2 Hui B, Zhang Y D, Ma Z Y, et al. Construction and Building Materials, 2023, 352, 129899.
3 Cui P D, Wu S P, Xiao Y, et al. Journal of Hazardous Materials, 2020, 405, 124441.
4 Rahman M N, Sarkar M T A, Elseifi M A, et al. Transportation Research Record, 2021, 2675(9), 1049.
5 Shamsaei M, Carter A, Vaillancourt M. Infrastructures, 2023, 8(5), 95.
6 Guirguis M, Buss A. Road Materials and Pavement Design, 2019, 22(1), 185.
7 Rahman M N, Sarkar M T A, Elseifi M A, et al. Construction and Building Materials, 2020, 260, 119787.
8 Song L, An C F, Huang M. Journal of Building Materials, 2019, 22(3), 440 (in Chinese).
宋亮, 安传峰, 黄美. 建筑材料学报, 2019, 22(3), 440.
9 Yu J M, Ma Y Y, Zhang Y, et al. Materials Reports, 2022, 36(16), 46 (in Chinese).
虞将苗, 马远跃, 张园, 等. 材料导报, 2022, 36(16), 46.
10 Chen Q, Wang C H, Zhou L, et al. Journal of Chang’an University (Natural Science Edition), 2022, 42(3), 26 (in Chinese).
陈谦, 王朝辉, 周璐, 等. 长安大学学报(自然科学版), 2022, 42(3), 26.
11 Yan K Z, Shi J Y, Shi K X, et al. Construction and Building Materials, 2022, 347, 128531.
12 Liu F Q, Zheng M L, Fan X P, et al. Construction and Building Materials, 2021, 274(2), 122059.
13 Hu X Z, Zhou C, Hou D H, et al. Thermosetting Resin, 2023, 38(1), 21 (in Chinese).
胡秀芝, 周超, 侯德华, 等. 热固性树脂, 2023, 38(1), 21.
14 Chen Q, Liu S T, Wang C H, et al. Journal of Changsha University of Science and Technology(Natural Science), 2024, 21(3), 79 (in Chinese).
陈谦, 刘思拓, 王朝辉, 等. 长沙理工大学学报(自然科学版), 2024, 21(3), 79.
15 Fan Z T, Wang C H, Li Y W, et al. Progress in Organic Coatings, 2024, 194, 108573.
16 Zhang Z Q, Wang S Q, Lu G D. International Journal of Pavement Engineering, 2019, 21(13), 1606.
17 Chen Q, Wang C H, Li Y W, et al. China Journal of Highway and Transport, 2023, 36(12), 249 (in Chinese).
陈谦, 王朝辉, 李彦伟, 等. 中国公路学报, 2023, 36(12), 249.
18 Chen Q, Li Y W, Wang C H, et al. Construction and Building Materials, 2023, 409, 134181.
19 Chen Q, Wang C H, Zhang W W, et al. Acta Materiae Compositae Sinica, 2023, 40(11), 6288 (in Chinese).
陈谦, 王朝辉, 张文武, 等. 复合材料学报, 2023, 40(11), 6288.
20 Chen Q, Lan X, Li A, et al. Wear, 2025, 566-567, 205919.
21 Yang F, Cong L, Li Z L, et al. Construction and Building Materials, 2022, 326, 126784.
22 Sun J, Zhang S Y, Liu Y C, et al. Sustainability, 2023, 15(18), 13635.
23 Wang C H, Huang S, Chen Q, et al. Journal of Road Engineering, 2023, 3(1), 16.
24 Xu L, Wang X B, Li X R, et al. Journal of Tongji University (Natural Science), 2022, 50(10), 1471 (in Chinese).
徐凌, 王小兵, 李先锐, 等. 同济大学学报(自然科学版), 2022, 50(10), 1471.
25 Li X L, Ye J H, Zhou Z H, et al. Construction and Building Materials, 2022, 350, 128827.
26 Liu F Q, Zheng M L, Fan X P, et al. Construction and Building Materials, 2021, 295, 123588.
27 Lu C, Zheng M L, Gao Y, et al. Journal of Applied Polymer Science, 141(7), e54937.
28 Xu P J, Wang Y D, Cheng P J, et al. Construction and Building Materials, 2023, 386, 131547.
29 Fu H, Wang C H, Liu L Q, et al. Materials Reports, 2023, 37(18), 282 (in Chinese).
傅豪, 王朝辉, 刘鲁清, 等. 材料导报, 2023, 37(18), 282.
30 Fu H, Wang C H, Niu L L, et al. International Journal of Pavement Engineering, 2022, 23(11), 4034.
31 Xu L, Jiang C S, Xiao F P. Journal of Materials in Civil Engineering, 2022, 34 (8), 04022160.
32 Li Y W, Wang Y C, Feng L, et al. Journal of Air Force Engineering University, 2024, 25(5), 19 (in Chinese).
李彦伟, 王育聪, 冯雷, 等. 空军工程大学学报, 2024, 25(5), 19.
33 Cai Y C, Yun S S, Liu H. Road Materials and Pavement Design, 25(3), 439.
34 Chen Q, Wang S S, Wang C H, et al. Journal of Materials in Civil Engineering, 2021, 33(5), 04021079
35 Chen Q, Wang C H, Fu H, et al. Materials Reports, 2021, 35(16), 16172 (in Chinese).
陈谦, 王朝辉, 傅豪, 等. 材料导报, 2021, 35(16), 16172.
36 Fu H, Wang C H, Wang D T, et al. International Journal of Pavement Engineering, 2022, 24(2), 2027419.
37 Liu S J, Cao X, Zhang Y L, et al. Materials Reports, 2024, 38(24), 273 (in Chinese).
刘圣洁, 曹旭, 张钰林, 等. 材料导报, 2024, 38(24), 273.
38 Chen Q, Wang C H, Fu H, et al. China Journal of Highway and Transport, 2021, 34(7), 236 (in Chinese).
陈谦, 王朝辉, 傅豪, 等. 中国公路学报, 2021, 34(7), 236.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 张红, 鄢文, 李楠, 张会, 陈哲, 李维泰. 一维陶瓷相增强的含碳耐火材料研究进展[J]. 材料导报, 2025, 39(9): 24070074-9.
[3] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[4] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[5] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[6] 陈新明, 陈姣姣, 刘晓辉, 焦华喆, 杨志, 杨柳华. 基于压滤效应影响的废弃石粉-黏土浆液性能研究[J]. 材料导报, 2025, 39(9): 23060049-10.
[7] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[8] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[9] 乐祥和, 张晓红, 乔英杰, 白成英, 王晓东, 李茂源, 陈为为. 石墨烯改性热固性树脂复合材料研究进展[J]. 材料导报, 2025, 39(9): 24040177-9.
[10] 来仁杰, 辛俊伟, 王磊, 王旭东, 吕永涛. 电化学阻抗谱技术在水处理分离膜研究中的应用进展[J]. 材料导报, 2025, 39(8): 24040168-9.
[11] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[12] 孟小丽, 李晓艳, 闫怡红, 李文博. 基于分子动力学的沥青-集料界面动态黏附及失效特性研究[J]. 材料导报, 2025, 39(8): 24010159-8.
[13] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[14] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[15] 武金帆, 徐芬, 孙立贤, 廖鹿敏, 管彦洵. 具有抗氧化性的Al-Bi(C2H5OH)3-C多孔块体制氢材料[J]. 材料导报, 2025, 39(8): 24030133-6.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[8] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[9] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
[10] LIU Hongyin, YANG Hongyu, CHEN Mingfeng. Impact of Isocyanate Index on Flame Retardancy, Thermal Stability andCombustion Behaviors of Rigid Polyurethane Foam[J]. Materials Reports, 2019, 33(12): 2071 -2075 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed