Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24120011-4    https://doi.org/10.11896/cldb.24120011
  无机非金属及其复合材料 |
球磨辅助磷酸盐钝化处理石墨及其在高温润滑涂层中的应用
刘燕1,2, 樊金桃1,2, 董娜娜3, 刘超4, 吴龑平1,3,*
1 天津市紧固连接技术重点实验室,天津 300300
2 航天精工股份有限公司,天津 300300
3 中国科学院兰州化学物理研究所润滑材料重点实验室,兰州 730000
4 中国航发四川燃气涡轮研究院,成都 610500
Treated Graphite with Phosphates Assisted by Ball Milling and Application in High Temperature Lubrication
LIU Yan1,2, FAN Jintao1,2, DONG Nana3, LIU Chao4, WU Yanping1,3,*
1 Tianjin Key Laboratory of Fastening Technology, Tianjin 300300, China
2 Aerospace Precision Corporation, Tianjin 300300, China
3 State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
4 AEEC Sichuan Gas Turbine Research Establishment, Chengdu 610500, China
下载:  全 文 ( PDF ) ( 17805KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨片是最常见的润滑功能填料,但其在大气高温环境中容易发生氧化,润滑性能下降甚至失效。因此,如何有效提高石墨在高温工况下的抗氧化性能是其在高温润滑领域能否被应用的关键。本工作在球磨辅助作用下利用本身具有良好耐高温性能的无机磷酸盐对石墨片进行钝化预处理,并以钝化处理后的改性石墨作为高温润滑填料,复配无机磷酸盐成膜物后得到具有良好高温润滑性能的石墨基干膜润滑剂。热重、拉曼、扫描电镜和高温摩擦试验结果表明,与未钝化处理石墨填料相比,球磨辅助钝化处理后的石墨填料的热稳定性得到显著提高,且对应粘结固体润滑涂层在室温至700 ℃范围内的平均摩擦系数减小,耐磨损性能提高,钝化处理石墨润滑涂层表现出更加优异的高温润滑性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘燕
樊金桃
董娜娜
刘超
吴龑平
关键词:  球磨辅助  石墨  钝化处理  无机磷酸盐涂层  高温润滑    
Abstract: Graphite has been widely utilized in the area of lubrication, but it is prone to oxidation at high temperatures, resulting in lubrication degradation and failure. Therefore, the key to high-temperature lubricating performance improvement is how to enhance the oxidation resistance of the graphite at high temperature. In this work, the raw graphite sheet was treated with the high temperature resistance inorganic phosphate under ball milling assistance, and the treated graphite based lubricant with lubrication function over a wide temperature range was prepared by mixing inorganic phosphate binder and treated graphite fillers. Results by TG, Raman, SEM and CSM tests indicate that, compared with the untreated graphite fillers, the thermal stability and wear life of the treated graphite are significantly increased at high temperatures, the treated graphite composite coatings show excellent thermal stability and lubrication performance under high temperature conditions.
Key words:  ball milling    graphite    passivation    inorganic phosphates coating    high temperature lubrication
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TB35  
基金资助: 天津市紧固连接技术企业重点实验室开放基金(TKLF2023-02-A-03);军科委基础加强计划项目(2022-JCJQ-JJ-0159);“叶企孙”联合基金项目(U2141210)
通讯作者:  *吴龑平,博士,中国科学院兰州化学物理研究所副研究员、硕士研究生导师。目前主要从事极端工况下的表面润滑与腐蚀防护等方面的研究。wuyanping1012@126.com   
作者简介:  刘燕,博士,主要研究方向为表面防护技术、紧固连接技术开发及应用。
引用本文:    
刘燕, 樊金桃, 董娜娜, 刘超, 吴龑平. 球磨辅助磷酸盐钝化处理石墨及其在高温润滑涂层中的应用[J]. 材料导报, 2025, 39(23): 24120011-4.
LIU Yan, FAN Jintao, DONG Nana, LIU Chao, WU Yanping. Treated Graphite with Phosphates Assisted by Ball Milling and Application in High Temperature Lubrication. Materials Reports, 2025, 39(23): 24120011-4.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120011  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24120011
1 Zhu D Y, Guan X F, Chen L J, et al. The Chinese Journal of Nonferrous Metals, 2004, 14(4), 528(in Chinese).
朱定一, 关翔锋, 陈丽娟, 等. 中国有色金属学报, 2004, 14(4), 528.
2 Xia Z W, Lyu J Y, Li T, et al. Rare Metal Materials and Engineering, 2024, 53(10), 2975(in Chinese).
夏志文, 吕俊毅, 李韬, 等. 稀有金属材料与工程. 2024, 53(10), 2975.
3 Li Z Y, Li D Z, Sun X Y, et al. Materials Reports, 2022, 36(6), 208 (in Chinese).
李正月, 李东泽, 孙秀英, 等. 材料导报, 2022, 36(6), 208.
4 Sun R Z, Wang Z Q, Duan R J, et al. Lubrication Engineering, 2022, 47(10), 185 (in Chinese).
孙润哲, 王正权, 端仁杰, 等. 润滑与密封, 2022, 47(10), 185.
5 Chao Y X, Dai L Y, Wei Y K, et al. Materials Reports, 2024, 38(2), 238 (in Chinese).
晁昀暄, 戴乐阳, 魏钰坤, 等. 材料导报, 2024, 38(2), 238.
6 Choi W S, Shim W G, Ryu D W, et al. Microporous and Mesoporous Materials, 2012, 155, 274.
7 Wang H, Sun F, Qu Z, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(22), 18554.
8 Ruan R, Dong Y, Hou R, et al. Chemical Engineering Journal, 2023, 454, 140418.
9 Zhou X, He W, Liu C, et al. Carbon, 2024, 225, 119103.
10 Jia Y, Chen L, Feng X, et al. RSC Advances, 2015, 5(85), 69606.
11 Zheng Z, Yang Y, Cheng S, et al. Wear, 2025, 562, 205665.
12 Lu W, Chung D D L. Carbon, 2002, 40(8), 1249.
[1] 乐祥和, 张晓红, 乔英杰, 白成英, 王晓东, 李茂源, 陈为为. 石墨烯改性热固性树脂复合材料研究进展[J]. 材料导报, 2025, 39(9): 24040177-9.
[2] 彭润玲, 王威, 刘锦悦, 高展, 郭俊德, 张耿. 冻干法制备石墨烯负载二硫化钼及其润滑性能研究[J]. 材料导报, 2025, 39(8): 24020011-7.
[3] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[4] 龙武剑, 唐懿, 郑淑仪, 何闯. 氮掺杂石墨烯量子点作为新型碳钢缓蚀剂:从设计到机理[J]. 材料导报, 2025, 39(7): 23100196-10.
[5] 李门, 李天鹏, 郭爱强, 刘建国, 高欣宝. vG和Cu/vG体系对H2O吸附的第一性原理研究[J]. 材料导报, 2025, 39(6): 23120052-5.
[6] 吴国栋, 张文, 伏鑫, 刘辉强, 汪建, 王兵, 熊鹰. 锰气相催化多晶金刚石表面原位石墨烯构筑研究[J]. 材料导报, 2025, 39(5): 24010176-4.
[7] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[8] 王蕾, 刘少冕, 范凤兰, 韩伟. 大幅提高速生木基钠离子电池负极首次库伦效率方法的研究[J]. 材料导报, 2025, 39(23): 24110189-6.
[9] 马应霞, 李静, 孟田力, 常士范, 李文静. Ni-MOF/GNS@Ni/Mn-LDH电极材料的电化学性能研究[J]. 材料导报, 2025, 39(22): 24110051-8.
[10] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[11] 梁红玉, 许佳智, 李政, 陆光, 王斌, 李桐宇, 刘玉佳. 广谱响应Cu2(OH)2CO3/g-C3N4异质结的构建及其光催化四环素的降解:降解途径及反应机理[J]. 材料导报, 2025, 39(19): 24080035-6.
[12] 张雨林, 肖颖, 靳力, 贺雍律, 陈晨, 周新贵, 张鉴炜. 氧化石墨烯对聚氨酯凝胶中离子传输的影响规律研究[J]. 材料导报, 2025, 39(19): 24080075-14.
[13] 周柯, 王晓明, 金庆忍, 常彬彬. 一步法构筑石墨化多级孔碳材料及其超级电容储能性能研究[J]. 材料导报, 2025, 39(18): 24080215-7.
[14] 刘奇, 赵莉, 沈冰, 马子伦, 陆佳林, 曲雯雯. Z型分级微球Bi2WO6/CdS/rGO的微波合成及光催化性能研究[J]. 材料导报, 2025, 39(18): 24090195-8.
[15] 路浩源, 穆锐, 仙光, 蒋昊洋, 刘杰. 金属单原子锚定g-C3N4光催化剂降解水体有机污染物的研究进展[J]. 材料导报, 2025, 39(17): 24050247-17.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed