Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24050216-8    https://doi.org/10.11896/cldb.24050216
  无机非金属及其复合材料 |
玄武岩纤维-粉煤灰提升水泥土抗剪性能试验研究
涂义亮1,2,*, 任思雨1, 赵林1, 凌玲1, 柴贺军2
1 重庆交通大学省部共建山区桥梁隧道工程国家重点实验室,重庆 400074
2 招商局重庆交通科研设计院有限公司,重庆 400067
Experimental Study of Basalt Fiber-Fly Ash to Enhance the Shear Properties of Cement Soil
TU Yiliang1,2,*, REN Siyu1, ZHAO Lin1, LING Ling1, CHAI Hejun2
1 State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 China Merchants Chongqing Communication Technology Research and Design Institute Co., Ltd., Chongqing 400067, China
下载:  全 文 ( PDF ) ( 48317KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了解决水泥土搅拌桩抗剪性能低而导致的路基失稳、变形等问题,通过直剪试验从宏观角度分析粉煤灰掺量、玄武岩纤维掺量和初始含水率三种因素对水泥土力学特性的影响,然后通过电镜扫描试验(SEM)从微观角度探究力学参数变化的原因以及玄武岩纤维和粉煤灰联合加固作用机理。结果表明:粉煤灰的掺入提高了水泥土的黏聚力,劣化了内摩擦角;而玄武岩纤维的掺入提高了水泥土的内摩擦角,劣化了黏聚力。过低的含水率会限制水泥的水化反应并影响土颗粒与水化产物的结合程度,而过高的含水率将增加结合水膜的厚度,劣化水泥土颗粒间的黏结性。玄武岩纤维的锚固加筋作用和阻裂作用提高了水泥土受力的均匀性,而粉煤灰的集料作用和二次反应产物填充了水泥土的内部孔隙,二者联合作用显著增强了水泥土的抗剪性能。针对重庆地区的山区软弱土,在本试验的研究条件下,当粉煤灰掺量为12%、玄武岩纤维掺量为0.6%、初始含水率为15.67%时,水泥土的抗剪性能最佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
涂义亮
任思雨
赵林
凌玲
柴贺军
关键词:  水泥土  玄武岩纤维  粉煤灰  抗剪性能  加固机理    
Abstract: To solve the problems of roadbed instability and deformation caused by low shear performance of cement soil mixing piles, the effects of three factors such as initial water content, fly ash dosage and basalt fiber dosage on the mechanical properties of cement soil were analyzed by the direct shear test from a macroscopic point of view. Meanwhile, the reasons of mechanical parameters changes and the mechanism of the combined reinforcement of basalt fiber and fly ash were explored by the scanning electron microscope test (SEM). The results show that insufficient water content will restrict the hydration reaction of the cement and weaken the bonding of the soil particles to the hydration products, whereas excessive water content will increase the thickness of the bonded water film, which deteriorate the bonding properties between the cement soil particles. The anchoring and reinforcing action of the basalt fibers, coupled with their crack-arresting effects, enhances the homogeneity of stress distribution within cement soil. Concurrently, the aggregating action and its secondary reaction products of fly ash fill the internal pores of the cement soil. Together, these mechanisms significantly improve the shear resistance of the cement soil. Within the study range of this experiment, the best shear performance of cement soil is obtained when the fly ash dosage is 12%, basalt fiber dosage is 0.6%, and the initial moisture content is 15.67%.
Key words:  cement soil    basalt fiber    fly ash    shear performance    reinforcement mechanism
出版日期:  2025-08-15      发布日期:  2025-08-15
ZTFLH:  TU447  
基金资助: 重庆市技术创新与应用发展专项面上项目(CSTB2024TIAD-GPX0051); 重庆市建设科技计划项目(城科字2024第2-7号); 重庆交通大学研究生科研创新项目资助(2024S0009); 重庆市教委雏鹰计划研究项目(CY230706)
通讯作者:  涂义亮,博士,副教授、硕士研究生导师。tyl_ok@126.com   
引用本文:    
涂义亮, 任思雨, 赵林, 凌玲, 柴贺军. 玄武岩纤维-粉煤灰提升水泥土抗剪性能试验研究[J]. 材料导报, 2025, 39(16): 24050216-8.
TU Yiliang, REN Siyu, ZHAO Lin, LING Ling, CHAI Hejun. Experimental Study of Basalt Fiber-Fly Ash to Enhance the Shear Properties of Cement Soil. Materials Reports, 2025, 39(16): 24050216-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050216  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24050216
1 Mahabub M S, Hasan M R, Khatti J, et al. Bulletin of Engineering Geology and the Environment, 2024, 83(1), 9.
2 Hu Y G. Experimental study on mixed in place pile improve slope soft-soil foundation’s engineering properties. Master's Thesis, Southwest Jiaotong University, China, 2010(in Chinese).
胡勇刚. 水泥土搅拌法(MIP)加固斜坡软弱土地基的工程特性试验研究. 硕士学位论文, 西南交通大学, 2010.
3 Wang F F, Shao J G, Li W K, et al. Sustainability, 2022, 14(21), 14359.
4 Sun H, Jiang K F, Wu X P, et al. Chinese Journal of Underground Space and Engineering, 2014, 10(S2), 1823(in Chinese).
孙红, 姜开锋, 吴雪萍, 等. 地下空间与工程学报, 2014, 10(S2), 1823.
5 Fan L Y. Journal of Railway Science and Engineering, 2015, 12(6), 1374(in Chinese).
范凌燕. 铁道科学与工程学报, 2015, 12(6), 1374.
6 Tu Y L, Zhang R, Ren S Y, et al. China Railway Science, 2024, 45(1), 36(in Chinese).
涂义亮, 张瑞, 任思雨, 等. 中国铁道科学, 2024, 45(1), 36.
7 Shao L, Liu S Y, Du G Y, et al. Journal of Engineering Geology, 2008(3), 121(in Chinese).
邵俐, 刘松玉, 杜广印, 等. 工程地质学报, 2008(3), 121.
8 Toghroli A, Shariati M, Sajedi F, et al. Smart Structures and Systems, 2018, 22(4), 433.
9 Hou Y F. Chinese Journal of Geotechnical Engineering, 2001, 23(3), 30(in Chinese).
侯永峰. 岩土工程学报, 2001, 23(3), 30.
10 Huang L J. Journal of Henan Polytechnic university (Nature Science), 2009, 28(3), 352(in Chinese).
黄丽娟. 河南理工大学学报(自然科学版), 2009, 28(3), 352.
11 Jia C Q, Huang M S, Yao H. Journal of Tongji University (Natural Science), 2004(7), 884(in Chinese).
贾苍琴, 黄茂松, 姚环. 同济大学学报(自然科学版), 2004(7), 884.
12 Chen F, Lai J H. Journal of Engineering Geology, 2016, 24(1), 96(in Chinese).
陈峰, 赖锦华. 工程地质学报, 2016, 24(1), 96.
13 Zhang Y J, Yu C X, Ling F, et al. Journal of Engineering Geology, 2015, 23(5), 982(in Chinese).
张艳军, 于沉香, 凌飞, 等. 工程地质学报, 2015, 23(5), 982.
14 Huang M J. Journal of Railway Science and Engineering, 2019, 16(4), 938(in Chinese).
黄敏建. 铁道科学与工程学报, 2019, 16(4), 938.
15 Ruan B, Deng L F, Ma C, et al. Journal of Railway Science and Engineering, 2020, 15(10), 2524(in Chinese).
阮波, 邓林飞, 马超, 等. 铁道科学与工程学报, 2020, 15(10), 2524.
16 Zhang D W, Zeng B, Liu S C, et al. China Journal of Highway and Transport, 2023, 36(10), 131(in Chinese).
章定文, 曾彪, 刘涉川, 等. 中国公路学报, 2023, 36(10), 131.
17 Kumar A, Gupta D. Geotextiles and Geomembranes, 2016, 44, 466.
18 Zhang X D, Pang S A, Geng J, et al. Theoretical and Applied Fracture Mechanics, 2023, 123, 103700.
19 Wu F, Yu Q L, Liu C W, et al. Materials and Structures, 2020, (53), 137.
20 Li Y, Zhang J P, He Y Z, et al. Composites Science and Technology, 2022, 225(7), 109519.
21 Zhang W Y, Zhou J, Li H, et al. Materials Reports, 2023, 37(20), 277(in Chinese).
张文雅, 周健, 李辉, 等. 材料导报, 2023, 37(20), 277.
22 Zhang G L, Ren H M, Zhang D W, et al. Hydro-Science and Engineering, 2022, (2), 109(in Chinese).
张国龙, 任昊铭, 章定文, 等. 水利水运工程学报, 2022, (2), 109.
23 Pedroso G O, Junior R D, Silva J L, et al. Materials, 2023, 16(11), 4185.
24 Shu Y H, Zhang J H. Polymers, 2023, 15(9), 2146.
25 He S, Chen Y, Liang M F, et al. Cement and Concrete Composites, 2023, 142, 105188.
26 Ministry of Water Resources of People’s Republic of China. Standard for geotechnical testing method:GB/T 50123-2019, China Planning Press, China, 2019, pp. 11(in Chinese).
中华人民共和国水利部. 土工试验方法标准:GB/T 50123-2019, 中国计划出版社, 2019, pp. 11.
27 Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Specification for mix proportion design of cement soil:GB/T 233-2011, China Architecture & Building Press, China, 2011, pp. 6 (in Chinese).
中华人民共和国住房和城乡建设部. 水泥土配合比设计规程:GB/T 233-2011, 中国建筑工业出版社, 2011, pp. 6.
28 Fen H P. Study on the mechanics behavior of joints under different shearing velocity. Master's Thesis, The Chinese Academy of Sciences (Institute of Rock and Soil mechanics), China, 2007 (in Chinese).
冯海鹏. 不同剪切速率下节理的力学特性研究. 硕士学位论文, 中国科学院研究生院(武汉岩土力学研究所), 2007.
29 Pang W T. Blenging fly ash compound cement soil mechanical properties and durability research. Master's Thesis, Inner MongoliaAgricultural University, China, 2013 (in Chinese).
庞文台. 掺和粉煤灰的复合水泥土力学性能及耐久性试验研究. 硕士学位论文, 内蒙古农业大学, 2013.
30 Wang D X, Wang H W, Stefan L, et al. Construction and Building Materials, 2020, 241, 118085.
31 Zhang C L, Wang S C, Zhu W, et al. Rock and Soil Mechanics, 2008, 29(S1), 567 (in Chinese).
张春雷, 汪顺才, 朱伟, 等. 岩土力学, 2008, 29(S1), 567.
32 Wang F T, Li K Q, Liu Y. Construction and Building Materials, 2022, 320(21), 126211.
33 Cui D S, Ding W, Cao L J, et al. Chinese Journal of Geotechnical Engineering, 2010, 32(6), 944(in Chinese).
崔德山, 项伟, 曹李靖, 等. 岩土工程学报, 2010, 32(6), 944.
[1] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[2] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[3] 郭寅川, 樊鹏龙, 申爱琴, 戴晓倩, 姚超, 杨雪瑞, 李震南. 轮载-动水耦合作用下玄武岩纤维路面混凝土性能衰减及机理研究[J]. 材料导报, 2025, 39(13): 24010002-8.
[4] 兰亚坤, 李丹, 丁立洋, 董庭轩, 李依鹏, 郭生伟. 粉煤灰基防鼠咬PVC线缆护套材料的制备与性能研究[J]. 材料导报, 2025, 39(12): 24060115-6.
[5] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[6] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[7] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[8] 谭洪波, 孔祥辉, 贺行洋, 李懋高, 苏英, 蹇守卫, 杨进. 化学外加剂对粉煤灰湿法细化活化的影响[J]. 材料导报, 2024, 38(5): 22100005-7.
[9] 张洪智, 梁取平, 邵明扬, 姜能栋, 杨梦宇, 隋高阳, 葛智. 磨细循环流化床粉煤灰对泡沫轻质土力学性能和孔结构的影响[J]. 材料导报, 2024, 38(22): 24020041-7.
[10] 董必钦, 张枭, 刘源涛, 何晓伟, 王琰帅. 硫酸铝对高掺量流化床粉煤灰基泡沫混凝土性能的影响[J]. 材料导报, 2024, 38(20): 23090133-8.
[11] 冯虎, 闵智爽, 郭奥飞, 朱必洋, 陈兵, 黄昊. 超高韧性磷酸镁水泥基复合材料压缩力学性能研究[J]. 材料导报, 2024, 38(17): 23090058-12.
[12] 孟祥瑞, 刘源涛, 陈兵, 王立艳. 粉煤灰在磷酸镁水泥体系中的作用机制研究[J]. 材料导报, 2024, 38(17): 24010084-7.
[13] 彭丽云, 陈星, 齐吉琳, 朱同宇. 微生物加固粉土的强度特性及加固机理研究[J]. 材料导报, 2024, 38(13): 23010024-7.
[14] 袁小亚, 蒲云东, 桂尊曜, 张惠一, 杨森, 金湛, 曹蔚琦. 羟基化石墨烯对粉煤灰-水泥基复合材料性能的影响[J]. 材料导报, 2024, 38(11): 23020017-8.
[15] 苗世坦, 刘嘉麒, 郭玲, 刘忠, 丁宝明, 张蕾. 高温处理对玄武岩纤维抗拉强度和结构的影响[J]. 材料导报, 2024, 38(11): 22090168-6.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed