Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24070154-8    https://doi.org/10.11896/cldb.24070154
  无机非金属及其复合材料 |
UHPC中纤维间距折减效应试验与模拟研究
杨雨1, 黄斌2,3, 黄伟1,*, 龚明子2,3, 潘阿馨1,2, 陈庆丰1, 陈宝春1,4, 韦建刚1,4
1 福州大学土木工程学院,福州 350108
2 中交一公局绿建(厦门)科技有限公司,福建 厦门 361000
3 中交一公局厦门工程有限公司,福建 厦门 361000
4 福建理工大学土木工程学院,福州 350118
Experimental and Simulation Study on Fiber Spacing Reduction Effect in UHPC
YANG Yu1, HUANG Bin2,3, HUANG Wei1,*, GONG Mingzi2,3, PAN Axin1,2, CHEN Qingfeng1, CHEN Baochun1,4, WEI Jiangang1,4
1 College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
2 CCCC Green Construction (Xiamen) Technology Co., Ltd., Xiamen 361000, Fujian, China
3 CCCC Xiamen Engineering Co., Ltd., Xiamen 361000, Fujian, China
4 College of Civil Engineering, Fujian University of Technology, Fuzhou 350118, China
下载:  全 文 ( PDF ) ( 18158KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了深入研究纤维与超高性能混凝土(UHPC)之间的界面性能,开展了纤维拉拔试验,并利用软件ABAQUS建立双纤维拔出试验的有限元模型,对钢纤维从UHPC基体中的拔出过程进行数值模拟。在验证有限元模型有效性和合理性的基础上进行参数分析,着重研究了钢纤维埋置间距对纤维-UHPC基体之间界面性能的影响,提出了间距折减效应、最大间距折减率和适宜间距。最终,根据结果拟合得到了界面峰值粘结强度计算公式。结果表明:随着埋置间距的增加,拔出功和峰值拔出应力均呈上升的趋势,不同埋置深度和钢纤维直径的峰值拔出力均呈先上升后近似水平发展的趋势;适宜间距值和最大间距折减率均随着钢纤维直径与埋置深度的增加而增大;当钢纤维埋置间距小于适宜间距且逐渐变小时,不同长度、直径的钢纤维与基体间的界面峰值粘结强度均呈近似线性下降的趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨雨
黄斌
黄伟
龚明子
潘阿馨
陈庆丰
陈宝春
韦建刚
关键词:  超高性能混凝土(UHPC)  界面性能  数值模拟  间距折减效应  适宜间距    
Abstract: In order to further study the interfacial performance between fiber and ultra-high performance concrete(UHPC), the fiber pull-out test was carried out and the finite element model of the double fiber pull-out test was established by using the software ABAQUS. The pull-out process of steel fiber from UHPC matrix was numerically simulated. On the basis of verifying the validity and rationality of the finite element model, the parameter analysis was carried out, and the influence of the embedded spacing of steel fiber on the interface performance between fiber and UHPC matrix was emphatically studied. The spacing reduction effect, the maximum spacing reduction rate and the suitable spacing are proposed. Finally, the calculation formula of interfacial peak bond strength was obtained according to the results. The results show that with the increase of embedding spacing, the pull-out work and peak pull-out stress show an upward trend, and the peak pull-out force of different embedding depths and steel fiber diameters increases first and then develops approximately horizontally. The suitable spacing value and the maximum spacing reduction rate increase with the increase of steel fiber diameter and embedding depth. When the embedded spacing of steel fiber is less than the suitable spacing and gradually becomes smaller, the interfacial peak bonding strength between steel fiber with different lengths and diameters and the matrix is approximately linearly decreasing.
Key words:  ultra-high performance concrete(UHPC)    interfacial performance    numerical simulation    spacing reduction effect    suitable spacing
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52278158); 福建省自然科学基金(2021J05124); 福建省交通运输厅交通运输科技项目(202268); 厦门市建设局建设科技项目(XJK2022-1-20)
通讯作者:  * 黄伟,博士,福州大学土木工程学院助理研究员、硕士研究生导师。主要从事超高性能/超高延性水泥基复合材料、水泥水化及微结构演变、固体废弃物综合利用、混凝土海洋环境耐久性、高性能混凝土外加剂等相关研究工作。WeiHuang@fzu.edu.cn   
作者简介:  杨雨,福州大学土木工程学院硕士研究生,在黄伟导师的指导下进行研究。目前主要研究领域为超高性能混凝土。
引用本文:    
杨雨, 黄斌, 黄伟, 龚明子, 潘阿馨, 陈庆丰, 陈宝春, 韦建刚. UHPC中纤维间距折减效应试验与模拟研究[J]. 材料导报, 2025, 39(14): 24070154-8.
YANG Yu, HUANG Bin, HUANG Wei, GONG Mingzi, PAN Axin, CHEN Qingfeng, CHEN Baochun, WEI Jiangang. Experimental and Simulation Study on Fiber Spacing Reduction Effect in UHPC. Materials Reports, 2025, 39(14): 24070154-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070154  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24070154
1 Tan Y, Lv L S, Zhang D W, et al. Engineering Structures, 2022, 269, 114758.
2 Cui H Z, Li Y H, Bao X H, et al. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2022, 128, 104647.
3 Shu Gang, Zhang Qinghua, Huang Yun, et al. Journal of Southwest Jiaotong University, 2019, 54(6), 1268(in Chinese).
舒刚, 张清华, 黄云, 等. 西南交通大学学报, 2019, 54(6), 1268.
4 Chen Baochun, Ji Tao, Huang Qingwei, et al. Journal of Architectural Science and Engineering, 2014, 31(3), 1(in Chinese).
陈宝春, 季韬, 黄卿维, 等. 建筑科学与工程学报, 2014, 31(3), 1.
5 Chen Peiran, Zhang Yafang, Li Gen. Journal of Sun Yat-sen University (Natural Science Edition), 2013, 52(6), 68(in Chinese).
陈沛然, 张亚芳, 李根. 中山大学学报(自然科学版), 2013, 52(6), 68.
6 Abu-Lebdeh T, Hamoush S, Heard W, et al. Construction and Building Materials, 2011, 25(1), 39.
7 Breitenbuecher R, Meschke G, Song F, et al. Structural Concrete, 2014, 15(2), 126.
8 Chun B, Yoo D. Composites Part B, 2019, 162, 344.
9 Tuyan M, Yazıci H. Construction and Building Materials, 2012, 35, 571.
10 Wu G, Wang H. Sustainability, 2023, 15(5), 4015.
11 Jamshid E, Keyvan A, Osman G, et al. Construction and Building Materials, 2021, 271, 121531.
12 Zhao Yihe, Sun Zhenping, Mu Fanyuan, et al. Journal of Building Materials, 2021, 24(2), 276(in Chinese).
赵一鹤, 孙振平, 穆帆远, 等. 建筑材料学报, 2021, 24(2), 276.
13 Cheng Jun, Liu Jiaping, Zhang Lihui. Concrete and Cement Products, 2016(5), 62(in Chinese).
程俊, 刘加平, 张丽辉. 混凝土与水泥制品, 2016(5), 62.
14 Deng F, Ding X, Chi Y, et al. Composite Structures, 2018, 206, 693.
15 Yoo D, Lee J, Yoon Y. Composite Structures, 2013, 106, 742.
16 Yuan Ming, Zhu Haile, Yan Donghuang, et al. Materials Reports, 2023, 37(16), 135(in Chinese).
袁明, 朱海乐, 颜东煌, 等. 材料导报, 2023, 37(16), 135.
17 Zhang Yafang, Wang Ganfeng, Liu Hao, et al. Journal of Guangzhou University (Natural Science Edition), 2017, 16(6), 31(in Chinese).
张亚芳, 王乾沣, 刘浩, 等. 广州大学学报(自然科学版), 2017, 16(6), 31.
18 Zhan Y, Meschke G. Journal of Engineering Mechanics, 2014, 140(12), 04014091.
19 Wang Zhaoyao, Bi Jihong, Zhao Yun, et al. Journal of Composite Materials, 2021, 38(12), 4379(in Chinese).
王照耀, 毕继红, 赵云, 等. 复合材料学报, 2021, 38(12), 4379.
20 Doo-Yeol Y, Soonho K, Jae-Jin K, et al. Construction and Building Materials, 2019, 206, 46.
21 Tai Y S, El-Tawil S. Construction and Building Materials, 2017, 148, 204.
22 Cao Y, Yu Q. Composite Structures, 2018, 201, 151.
23 Yoo D, Kim J, Park J. Construction and Building Materials, 2019, 210, 461.
24 Kim J, Yoo D. Cement and Concrete Composites, 2019, 103, 213.
25 Zhang Yafang, Luo Feihua, Liu Hao, et al. Journal of Shenzhen University (Sci-Tech Edition), 2018, 35(5), 453(in Chinese).
张亚芳, 罗斐化, 刘浩, 等. 深圳大学学报(理工版), 2018, 35(5), 453.
26 Zhang Yafang, Zeng Xiangrong, Liu Hao, et al. Journal of Wuhan University of Technology, 2015, 37(9), 78(in Chinese).
张亚芳, 曾向荣, 刘浩, 等. 武汉理工大学学报, 2015, 37(9), 78.
27 Kim J J, Yoo Y D. Archives of Civil and Mechanical Engineering, 2020, 20(2), 46.
28 Zhang Yafang, Liu Hao, Gao Zhao. Journal of Wuhan University of Technology, 2018, 40(3), 42(in Chinese).
张亚芳, 刘浩, 高照. 武汉理工大学学报, 2018, 40(3), 42.
29 Liu Hao, Zeng Xiangrong, Zhang Yafang, et al. Journal of Sun Yat-sen University (Natural Science Edition), 2018, 57(3), 143(in Chinese).
刘浩, 曾向荣, 张亚芳, 等. 中山大学学报(自然科学版), 2018, 57(3), 143.
30 Zhang Yafang, Zeng Xiangrong, Liu Hao, et al. Journal of Sun Yat-sen University (Natural Science Edition), 2016, 55(5), 43(in Chinese).
张亚芳, 曾向荣, 刘浩, 等. 中山大学学报(自然科学版), 2016, 55(5), 43.
31 Park J K, Ngo T T, Kim D J. Cement and Concrete Research, 2019, 123, 1.
32 Bi Jihong, Huo Linying, Zhao Yun, et al. Journal of Hunan University (Natural Science Edition), 2021, 48(7), 9(in Chinese).
毕继红, 霍琳颖, 赵云, 等. 湖南大学学报(自然科学版), 2021, 48(7), 9.
33 Yang Jian, Li Yang, Chen Baochun, et al. Materials Reports, 2024, 38 (6), 22110263(in Chinese).
杨简, 李洋, 陈宝春, 等. 材料导报, 2024, 38 (6), 22110263.
34 Ye Judong. Study on the drawing mechanism of high performance concrete spiral steel fiber. Master's Thesis, Zhejiang University, China, 2017 (in Chinese).
叶居东. 高性能混凝土螺旋钢纤维拉拔机理研究. 硕士学位论文, 浙江大学, 2017.
35 Hu Wenxu, Chen Baochun, Li Cong, et al. Journal of Fuzhou University (Natural Science Edition), 2022, 50(6), 833(in Chinese).
胡文旭, 陈宝春, 李聪, 等. 福州大学学报(自然科学版), 2022, 50(6), 833.
[1] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[2] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[3] 王志航, 白二雷, 黄河, 杜宇航, 任彪. 碳纤维增强水泥基材料界面改性研究进展[J]. 材料导报, 2025, 39(5): 24020133-9.
[4] 李雷, 孙东旭, 柴玉莹, 谢飞, 吴明. 剥离涂层下含缺陷管道腐蚀规律的瞬态数值模拟研究[J]. 材料导报, 2025, 39(5): 23010094-9.
[5] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[6] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[7] 汪宙, 陈爽, 马宗涛, 张天豪, 李继文, 晁霞. 非均衡底吹对铁碳熔池废钢熔化行为影响的模拟研究[J]. 材料导报, 2025, 39(14): 24060048-8.
[8] 赵卫平, 刘英健, 生兆川, 程赛, 徐旸. 三维细观早龄期混凝土导热性能数值模拟[J]. 材料导报, 2025, 39(10): 24040083-10.
[9] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[10] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[11] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[12] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[13] 张天刚, 潘启越, 张志强, 曹思雨. 铝合金表面阳极氧化膜激光清洗机制分析[J]. 材料导报, 2024, 38(24): 23100128-10.
[14] 金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
[15] 郑莲宝, 李旺, 王松伟, 徐勇, 宋鸿武. 基于场量传递的流动-传热-凝固过程耦合计算模型及其应用[J]. 材料导报, 2024, 38(20): 23080032-7.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed