Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24080102-5    https://doi.org/10.11896/cldb.24080102
  金属与金属基复合材料 |
氢对TC4ELI钛合金疲劳裂纹扩展行为影响
杨日明1,2, 申秀丽1,2, 董少静1,2,*
1 北京航空航天大学能源与动力工程学院,北京 100191
2 先进航空发动机协同创新中心,北京 100191
Influence of Hydrogen on Fatigue Crack Growth Behavior of TC4ELI Titanium Alloy
YANG Riming1,2, SHEN Xiuli1,2, DONG Shaojing1,2,*
1 School of Energy and Power Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
2 Collaborative Innovation Center for Advanced Aero-Engine, Beijing 100191, China
下载:  全 文 ( PDF ) ( 22490KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 新型TC4ELI钛合金在氢燃料发动机上应用前景巨大,但存在氢损伤风险,研究氢对其疲劳裂纹扩展行为的影响具有重要意义。本工作以TC4ELI钛合金为研究对象,进行高温气相充氢,利用X射线衍射仪和二次离子质谱仪等研究了充氢TC4ELI微观组织的演化和氢化物的生成与分布,开展了不同加载频率下的疲劳裂纹扩展试验,并结合裂纹扩展路径和断口形貌表征进行了进一步的分析。结果表明:(1)充氢促进了TC4ELI中α相转变为β相,β相体积分数增加,氢原子主要聚集在β相和晶界内并析出硬脆的δ氢化物;(2)β相体积分数的增加和硬脆δ氢化物的析出导致充氢TC4ELI的裂纹扩展由穿晶模式转变为穿晶+沿晶的混合模式,加快了疲劳裂纹扩展速率;(3)当加载频率低于0.1 Hz时,氢有足够的时间扩散并聚集在裂纹尖端区域,导致氢对TC4ELI疲劳裂纹扩展速率的加速作用更加显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨日明
申秀丽
董少静
关键词:    TC4ELI钛合金  氢损伤  疲劳裂纹扩展  加载频率    
Abstract: The new TC4ELI titanium alloy exhibits significant potential for application in hydrogen fuel engines, but it faces the risk of hydrogen damage. Therefore, investigating the influence of hydrogen on fatigue crack growth behavior is of great significance. In this work, taking the TC4ELI titanium alloy treated by high-temperature gaseous hydrogen as samples. The microstructure evolution, hydride formation and distribution of the samples were analyzed using techniques such as X-ray diffraction and secondary ion mass spectrometer. Fatigue crack growth tests at different loading frequencies were carried out, furthermore, the crack growth path and fracture morphology were combined for further analysis. The results show that:(1) hydrogen charging promotes the transformation of α phase into β phase within TC4ELI, resulting in an increased volume fraction of β phase. Hydrogen atoms predominantly accumulate in the β phase and at grain boundaries, leading to the precipitation of hard and brittle δ hydrides. (2)The increase in β phase volume fraction along with δ hydride precipitation causes a transition in crack growth of hydrogen-charged TC4ELI from the transgranular mode to the mixed mode involving both transgranular and intergranular, thereby accelerating the rate of fatigue crack growth. (3)When the loading frequency is below 0.1 Hz, there is sufficient time for hydrogen to diffuse and accumulate at the crack tip region, which significantly enhances its effect on accelerating fatigue crack growth rate in TC4ELI.
Key words:  hydrogen    TC4ELI titanium alloy    hydrogen damage    fatigue crack growth    loading frequency
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  V252.2  
基金资助: 中央高校基本科研业务费专项资金资助 (501XTCX2023146001)
通讯作者:  * 董少静,博士,北京航空航天大学能源与动力工程学院副研究员、博士研究生导师。目前主要从事航空发动机热端部件结构强度及多学科优化、陶瓷基复合材料在发动机热端部件的应用、高温合金多尺度力学分析等方面的研究。dongshaojing@buaa.edu.cn   
作者简介:  杨日明,北京航空航天大学能源与动力工程学院硕士研究生,在申秀丽教授和董少静副研究员的指导下进行研究。目前主要研究领域为氢燃料发动机典型材料氢损伤以及抗氢损伤设计。
引用本文:    
杨日明, 申秀丽, 董少静. 氢对TC4ELI钛合金疲劳裂纹扩展行为影响[J]. 材料导报, 2025, 39(14): 24080102-5.
YANG Riming, SHEN Xiuli, DONG Shaojing. Influence of Hydrogen on Fatigue Crack Growth Behavior of TC4ELI Titanium Alloy. Materials Reports, 2025, 39(14): 24080102-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080102  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24080102
1 Cao G J, Wang Y H, Sun X J. Aerospace Power, 2022(2), 29 (in Chinese).
曹冠杰, 王业辉, 孙小金. 航空动力, 2022(2), 29.
2 Li W, Cao J, Xiao W. Aerospace Power, 2022(2), 39 (in Chinese).
李维, 曹俊, 肖为. 航空动力, 2022(2), 39.
3 Li C, Zhao L, Xu L Y, et al. Materials Reports, DOI:10. 11896/cldb. 24040126 (in Chinese).
李丛, 赵雷, 徐连勇, 等. 材料导报, DOI:10. 11896/cldb. 24040126.
4 Wang J, Liu X Y, Gao L Q, et al. Material Protection, 2020, 53(11), 98 (in Chinese).
王佳, 刘晓勇, 高灵清, 等. 材料保护, 2020, 53(11), 98.
5 Nie P, Yang S Y, Guo Y Q, et al. Journal of Changsha University of Science & Technology (Natural Science), DOI:10. 19951/j. cnki. 1672-9331. 20231225002(in Chinese).
聂鹏, 杨世源, 郭永强, 等. 长沙理工大学学报(自然科学版), DOI:10. 19951/j. cnki. 1672-9331. 20231225002.
6 Xu A J, Wan H F, Liang C Z, et al. Journal of Netshape Forming Engineering, 2020, 12(6), 145 (in Chinese).
许爱军, 万海峰, 梁春祖, 等. 精密成形工程, 2020, 12(6), 145.
7 Lyu Z Y, Xiong J J, Zhao Y G, et al. Journal of Aeronautical Materials, 2018, 38(4), 123 (in Chinese).
吕志阳, 熊峻江, 赵延广, 等. 航空材料学报, 2018, 38(4), 123.
8 Yang F, Zhang C, Zhang B C, et al. Acta Energiae Solaris Sinica, 2023, 44(10), 557 (in Chinese).
扬帆, 张超, 张博超, 等. 太阳能学报, 2023, 44(10), 557.
9 Eli B, Nissim N, Brian R, et al. International Journal of Hydrogen Energy, 2021, 46(53), 27234.
10 Nguyen T D, Singh C, Lee D H, et al. Materials, 2024, 17(5), 1178.
11 Zhang H B, Leygraf C, Jin Y, et al. International Journal of Hydrogen Energy, 2023, 48(92), 36169.
12 Liu X Z, Han E H, Song Y W, et al. Electrochimica Acta, 2023, 464, 142916.
13 Muravev V I, Bakhmatov P V, Grigorev V V, et al. Welding International, 2021, 35(10-12), 459.
14 Feng X D, Shi Y, Zhang W Z, et al. Crystals, 2023, 13(3), 512.
15 Dong Y C, Huang S, Wang Y Y, et al. Materials Characterization, 2022, 194, 112357.
16 Bai G Q, Wang Q Y, Deng H Q, et al. Materials Reports, 2020, 34(22), 22130 (in Chinese).
白光乾, 王秋岩, 邓海全, 等. 材料导报, 2020, 34(22), 22130.
17 Fu Z H, Wu P F, Yang Q K, et al. Corrosion Science, 2024, 227, 111745.
18 Fu Z H, Wu P F, Zhang Y, et al. International Journal of Fatigue, 2022, 160, 106848.
19 Matsunaga H, Takakuwa O, Yamabe J, et al. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2017, 375(2098), 20160412.
20 Liu P T, Zhao X J, Liu X, et al. Journal of Aeronautical Materials, 2011, 31(3), 52 (in Chinese).
刘鹏涛, 赵秀娟, 刘昕, 等. 航空材料学报, 2011, 31(3), 52.
21 Liu Q M. Hydrogen induced crack propagation in TIG welded joints of titanium alloy plates. Ph. D. Thesis, Xi'an University of Architecture and Technology, China, 2018 (in Chinese).
刘全明. 钛合金板氩弧焊接接头氢致裂纹扩展行为研究. 博士学位论文, 西安建筑科技大学, 2018.
[1] 李丛, 赵雷, 徐连勇, 韩永典, 郝康达. 掺氢/纯氢环境下燃气轮机的氢致损伤研究进展[J]. 材料导报, 2025, 39(9): 24040126-10.
[2] 赵岚, 韩颖超. 纳米氢氧化镧磷吸附剂的制备及水体除磷研究[J]. 材料导报, 2025, 39(8): 24010253-7.
[3] 刘宇, 张健, 庞小通, 周小杰, 卢先正, 陈小敏, 李佳豪, 彭平. 镧镍系合金对氢化镁组织结构与储氢性能的影响及机理[J]. 材料导报, 2025, 39(8): 24040039-6.
[4] 武金帆, 徐芬, 孙立贤, 廖鹿敏, 管彦洵. 具有抗氧化性的Al-Bi(C2H5OH)3-C多孔块体制氢材料[J]. 材料导报, 2025, 39(8): 24030133-6.
[5] 孙丽丽, 关宁, 王勇, 李永存. TiFe基储氢合金活化及电化学性能研究进展[J]. 材料导报, 2025, 39(4): 24010105-9.
[6] 李东翰, 宁舒蕊, 于璐, 廖明义, 张梦霞, 尤诗博, 方庆红. 稀土催化还原体系用于遥爪型低分子量含氟聚合物端基官能化的基础研究[J]. 材料导报, 2025, 39(3): 23100154-9.
[7] 商怡然, 刘强, 李海云, 赵洁, 邓橙, 王心淼, 吴金辉, 衣颖. 汽化过氧化氢和气体二氧化氯熏蒸消毒材料兼容性研究[J]. 材料导报, 2025, 39(14): 24030141-6.
[8] 李亚莎, 晏欣悦, 王佳敏, 郭玉杰, 陈俊璋, 张永蘅. 离子影响油纸绝缘结合性能的分子动力学模拟研究[J]. 材料导报, 2025, 39(14): 24030082-8.
[9] 吕超杰, 成伽润, 关春阳, 鲁成兴, 李美平, 张丹. 界面工程化Ni(OH)2@CoP核壳结构纳米阵列电解水性能研究[J]. 材料导报, 2025, 39(13): 24050219-10.
[10] 何静娴, 刘建霞, 缑浩. 光热催化产氢技术的进展与讨论[J]. 材料导报, 2025, 39(11): 24010063-8.
[11] 聂懿宸, 李帅哲, KeomeesayPhidsavard, 顾雯, 张伟, 刘娜, 徐高翔, 刘莹, 李兴勇, 陈玉保1,2,3,4. 贵金属(Pt/Pd/Ru)/分子筛在油脂加氢脱氧制备高品质烃类液体燃料中的研究进展[J]. 材料导报, 2025, 39(11): 24040216-14.
[12] 刘志伟, 武婵, 遆鑫森, 刘有智. SDBS插层与吸附协同增强片状镍钴氢氧化物的电化学性能[J]. 材料导报, 2025, 39(10): 23070007-8.
[13] 刘志坦, 吴溢凡, 李玉刚, 王纯, 曹炼博, 成先明, 杨可. 掺氢天然气管道氢致损伤及检测技术研究现状[J]. 材料导报, 2025, 39(10): 24040041-8.
[14] 胡乾宇, 陈昆峰, 薛冬峰. 异质界面对磷酸二氢铵单液滴结晶行为的影响[J]. 材料导报, 2025, 39(1): 24010234-5.
[15] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed