Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24030141-6    https://doi.org/10.11896/cldb.24030141
  无机非金属及其复合材料 |
汽化过氧化氢和气体二氧化氯熏蒸消毒材料兼容性研究
商怡然, 刘强, 李海云, 赵洁, 邓橙, 王心淼, 吴金辉*, 衣颖*
军事科学院系统工程研究院,天津 300161
Study on the Material Compatibility of Vaporized Hydrogen Peroxide and Chlorine Dioxide Gas for Fumigation Disinfection
SHANG Yiran, LIU Qiang, LI Haiyun, ZHAO Jie, DENG Cheng, WANG Xinmiao, WU Jinhui*, YI Ying*
Systems Engineering Institute, Academy of Military Science of the Chinese People's Liberation Army, Tianjin 300161, China
下载:  全 文 ( PDF ) ( 34942KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对比分析汽化过氧化氢和气体二氧化氯两种生物安全领域常用熏蒸消毒剂对材料的腐蚀性,为实际应用时消毒剂型、剂量选择及危害规避提供参考。选择生物安全领域常见的金属和非金属材料为消毒对象,放置在相对湿度50%、温度20 ℃的1 m3密闭舱内,分别暴露在6.5 g/m3的汽化过氧化氢和3.3 g/m3的气体二氧化氯中熏蒸1.5 h,实验重复20次,通过称重、表观观察及透光率测试等分析材料腐蚀和性状改变情况。汽化过氧化氢对大部分不锈钢、铜、铝合金、铬镀层等的腐蚀为轻度腐蚀;气体二氧化氯对铜、铝的腐蚀为中度腐蚀,对不锈钢和铜镀铬的腐蚀为轻度腐蚀;两种熏蒸消毒剂对非金属材料的腐蚀性较低,对聚丙烯(PP)、聚甲基丙烯酸甲酯(PMMA)、彩色涂层钢板等材料的腐蚀为轻微腐蚀,气体二氧化氯会使热塑性聚氨酯橡胶(TPU)、丙烯腈-丁二烯-苯乙烯塑料(ABS)等材料颜色发生变化。汽化过氧化氢和气体二氧化氯熏蒸消毒对金属材料兼容性较好,均未产生严重腐蚀,也未导致材料性状发生重大变化,气体二氧化氯会导致某些非金属材料颜色发生变化。比较而言,汽化过氧化氢对材料的影响小于气体二氧化氯。在这两种熏蒸消毒剂的实际应用中,应充分考虑它们的材料兼容性,在确保消毒效果的同时,最大限度地降低对材料性能的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
商怡然
刘强
李海云
赵洁
邓橙
王心淼
吴金辉
衣颖
关键词:  汽化过氧化氢  气体二氧化氯  熏蒸消毒  材料兼容性    
Abstract: To provide reference for the selection of disinfectant types, dosage, and hazard avoidance in practical applications, we compared and analyzed the corrosiveness of vaporized hydrogen peroxide and chlorine dioxide gas which are commonly used fumigation disinfectants in the field of biosafety. Under the same temperature and humidity conditions, the metal and non-metal materials in the field of biosafety were selected as disinfection objects. They were placed in a 1 m3 sealed chamber with the relative humidity of 50% and the temperature of 20 ℃, and exposed to 6.5 g/m3 of vaporized hydrogen peroxide and 3.3 g/m3 of chlorine dioxide gas for 1.5 h. This experiment was repeated 20 times. The corrosion and changes in properties of the materials were analyzed through weighing, apparent observation, and transmittance testing. Vaporized hydrogen peroxide has mild corrosion on most stainless steel, copper, aluminum alloys, and chromium coatings. Chlorine dioxide gas shows mo-derate corrosion on copper and aluminum, and mild corrosion on stainless steel and chromium coatings. These two fumigation disinfectants have no obvious corrosion to non-metallic materials, and slight corrosion to materials such as PP, PMMA, and color coated steel plates. Chlorine dio-xide gas can change the appearance of TPU and ABS. Vaporized hydrogen peroxide and chlorine dioxide gas fumigation disinfections have good compatibility with metal materials, and neither cause severe corrosion or significant changes in material properties. Chlorine dioxide gas can cause color changes in certain non-metallic materials. Comparatively speaking, the impact of vaporized hydrogen peroxide on materials is smaller than that of chlorine dioxide gas. In the practical application of the two fumigation disinfectants, their material compatibility should be fully considered to simultaneously ensure disinfection effectiveness and minimize the impact on material properties.
Key words:  vaporized hydrogen peroxide    chlorine dioxide gas    fumigation disinfection    material compatibility
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  O647  
基金资助: 国家重点研发计划(2021YFC2600304)
通讯作者:  * 吴金辉,硕士,军事科学院系统工程研究院正高级工程师、硕士研究生导师。目前主要从事生物安全防护材料、消毒材料等方面的研究工作。wujh@npec.org.cn
衣颖,博士,军事科学院系统工程研究院高级工程师、硕士研究生导师。目前主要从事消毒技术与装备方面的研究工作。yiy@npec.org.cn   
作者简介:  商怡然,军事科学院系统工程研究院硕士研究生,在吴金辉教授的指导下进行研究。目前主要研究领域为新型高效消毒技术。
引用本文:    
商怡然, 刘强, 李海云, 赵洁, 邓橙, 王心淼, 吴金辉, 衣颖. 汽化过氧化氢和气体二氧化氯熏蒸消毒材料兼容性研究[J]. 材料导报, 2025, 39(14): 24030141-6.
SHANG Yiran, LIU Qiang, LI Haiyun, ZHAO Jie, DENG Cheng, WANG Xinmiao, WU Jinhui, YI Ying. Study on the Material Compatibility of Vaporized Hydrogen Peroxide and Chlorine Dioxide Gas for Fumigation Disinfection. Materials Reports, 2025, 39(14): 24030141-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030141  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24030141
1 Hao L M, Yi Y, Li S, et al. Chinese Medical Equipment Journal, 2018, 39(2), 92 (in Chinese).
郝丽梅, 衣颖, 林松, 等. 医疗卫生装备, 2018, 39(2), 92.
2 Zhang Q H, Ji S X, Hu J H, et al. Journal of Henan Institute of Science and Technology (Natural Science Edition), 2014, 42(4), 62 (in Chinese).
张庆华, 姬素霞, 胡金花, 等. 河南科技学院学报(自然科学版), 2014, 42(4), 62.
3 Cao W L, Xu Z, World Notes on Antibiotics, 2020, 41(5), 398 (in Chinese).
曹伟龙, 徐志. 国外医药(抗生素分册), 2020, 41(5), 398.
4 Lyu Y J, Cheng J S, Fu Y Q, et al. Chinese Journal of Disinfection, 2018, 35(4), 245 (in Chinese).
吕玉姣, 程锦生, 傅元清, 等. 中国消毒学杂志, 2018, 35(4), 245.
5 Lyu X D, Miao X L, Ye G X, et al. Chemical Engineer, 2023, 37(11), 63 (in Chinese).
吕晓冬, 苗笑亮, 叶更新, 等. 化学工程师, 2023, 37(11), 63.
6 Liu Y H. Study on the preparation of chlorine dioxide and the corrosion characteristics of steel materials during the disinfection process. Master's Thesis, Northeastern University, China, 2021 (in Chinese).
刘宇鹤. 二氧化氯的制备及消毒过程中对钢材料的腐蚀特性研究. 硕士学位论文, 东北大学, 2021.
7 Shunji I, Taishi H, Tomoe S, et al. Heliyon, 2023, 9(2), e13360.
8 Hu J, Li Y M, Cai H L, et al. Chinese Journal of Disinfection, 2020, 37(4), 241 (in Chinese).
胡佳, 李裕明, 蔡慧玲, 等. 中国消毒学杂志, 2020, 37(4), 241.
9 U. S. Environmental Protection Agency. New Caledonia, EPA/600/R-10/037, 2010.
10 吴金辉, 邓橙, 郝丽梅, 等. 中国专利, CN113735064B, 2023.
11 中华人民共和国国家卫生健康委员会. GB/T 38498-2020消毒剂金属腐蚀性评价方法. 中国标准出版社, 2020.
12 全国橡胶与橡胶制品标准化技术委员会软管分技术委员会. GB/T 24134-2009橡胶和塑料软管静态条件下耐臭氧性能的评价. 中国标准出版社, 2009.
13 Yang D H, Wang K, Yang B Y, et al. Chemical Engineering Management, 2022(16), 80 (in Chinese).
杨德红, 王坤, 杨本勇, 等. 化工管理, 2022(16), 80.
14 Jia L H. Modern Chemical Research, 2024(3), 80 (in Chinese).
贾凌寒. 当代化工研究, 2024(3), 80.
15 Liu Y H, Wu M S, Wang X S, et al. Inorganic Chemicals Industry, 2021, 53(3), 18 (in Chinese).
刘宇鹤, 吴明松, 王欣舒, 等. 无机盐工业, 2021, 53(3), 18.
16 Mcevoy B, Eveland R. Biomedical Instrumentation and Technology, 2020, 54(S3), 74.
17 Trinh V M, Yuan M H, Chen Y H, et al. Journal of Cleaner Production, 2021, 320, 128885.
[1] 唐同, 宓保森, 马迅, 王静静, 陈天驹, 刘平, 李伟. 医用手术电极抗粘连材料的研究进展[J]. 材料导报, 2025, 39(14): 24060199-9.
[2] 任永忠, 舒天浩, 李鑫林, 张振宇, 梁补女, 李天义, 金志华. 基于化学刻蚀法构筑超疏水沙子表面及其性能研究[J]. 材料导报, 2025, 39(6): 23050086-5.
[3] 刘平, 王晨, 韩庆文, 苗攀, 马家玉. 半包覆锰基复合锂离子筛的制备与吸附性能[J]. 材料导报, 2025, 39(4): 23110239-7.
[4] 党奔, 陈志俊. 木基光热转换功能材料的应用研究进展[J]. 材料导报, 2025, 39(1): 24100143-13.
[5] 付华, 陈慧媛, 宋维君, 赵云. 一种新型的用于萃取铷的冠醚功能化磁性固相纳米材料[J]. 材料导报, 2024, 38(17): 22070038-6.
[6] 李鹏程, 魏嘉佳, 孟昊天, 王文轩, 李佳峻, 李达, 涂秋芬. 静电自组装法构建抗菌抗凝涂层的研究[J]. 材料导报, 2024, 38(14): 23020101-9.
[7] 李雪, 周明宇, 韩朋, 戚桂村, 高达利, 陶胜洋, 王玉超. 高效太阳能驱动海水淡化的最新研究进展[J]. 材料导报, 2024, 38(13): 22110120-16.
[8] 金磊源, 胡芳坤, 姜晓娇, 夏立, 刘冉, 徐佳乐, 涂秋芬, 熊开琴. 基于Notch信号通路抑制剂的多功能血管支架涂层制备及表征[J]. 材料导报, 2024, 38(12): 22120030-8.
[9] 丁茜, 李海波, 廖俊生. 铀及铀铌合金在潮湿气氛中的腐蚀行为研究进展[J]. 材料导报, 2024, 38(12): 23030113-11.
[10] 肖易航, 郑军, 何勇明. 气泡在粗糙表面的润湿行为研究[J]. 材料导报, 2023, 37(23): 22030060-7.
[11] 谢鑫, 吕楠, 涂秋芬. 基于“酚-胺”化学构建抗污表面的研究[J]. 材料导报, 2023, 37(17): 22030171-6.
[12] 张鹏军, 陈国祥, 安国, 刘迎港. 铁修饰二碲化钼吸附氮化物的气敏特性研究[J]. 材料导报, 2023, 37(12): 21110219-6.
[13] 李娅, 马飞跃, 张明, 涂行浩, 杜丽清. 不同尺寸改性果胶基磁性微球的制备及对Pb2+吸附性能的研究[J]. 材料导报, 2023, 37(9): 21050165-8.
[14] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[15] 刘珊, 廖磊, 魏莉, 李炫妮, 曹磊, 王鑫. 壳聚糖交联腐殖酸凝胶球吸附渗滤液中重金属离子研究[J]. 材料导报, 2023, 37(3): 21040317-8.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed