Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24030260-6    https://doi.org/10.11896/cldb.24030260
  金属与金属基复合材料 |
介质阻挡放电协同催化剂Cu/γ-Al2O3转化羰基硫
周晓霞1, 陈鹏1, 李丹婷3, 李德福1, 陈怡1, 马懿星1,2,*, 王学谦1,2, 王郎郎1,2, 宁平1,2
1 昆明理工大学环境科学与工程学院,昆明 650504
2 冶金及化工行业废气资源化国家地方联合工程研究中心,昆明 650504
3 中国电建集团昆明勘测设计研究院有限公司,昆明 650032
Conversion of Carbonyl Sulfur Through the Synergistic Effect of Dielectric Barrier Discharge and Catalyst Cu/γ-Al2O3
ZHOU Xiaoxia1, CHEN Peng1, LI Danting3, LI Defu1, CHEN Yi1, MA Yixing1,2,*, WANG Xueqian1,2, WANG Langlang1,2, NING Ping1,2
1 Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650504, China
2 National and Local Joint Engineering Research Center for Recycling Waste Gas of Metallurgy and Chemical Industry, Kunming 650504, China
3 Power China Kunming Engineering Corporation Limited, Kunming 650032, China
下载:  全 文 ( PDF ) ( 8349KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 低温等离子体协同催化剂技术因结合了低温等离子体的高反应活性和催化剂的高反应选择性而被广泛应用于气态污染物的净化。本工作利用介质阻挡放电(DBD)低温等离子体与催化剂协同转化羰基硫(COS),研究了入口COS浓度、流量、湿度、氧气浓度等因素对COS转化的影响,分析了DBD等离子体与不同种类催化剂(Cu/γ-Al2O3、Mn/γ-Al2O3、Ce/γ-Al2O3、Fe/γ-Al2O3、Co/γ-Al2O3)协同作用转化COS的效果。结果表明,DBD+Cu/γ-Al2O3协同作用下,不仅COS转化效率高于DBD与其他几种催化剂协同作用以及单独使用DBD等离子体,而且副产物(H2S、SO2、O3)的生成得到有效抑制,表现为高选择性地生成硫单质。当入口浓度为1 700 mL/m3、气体流速为200 mL/min、湿度为25%、氧气浓度为0.3%、能量密度(SED)为1 954 J/L时,DBD+Cu/γ-Al2O3协同作用下COS的转化效率达98.9%且无副产物生成。此外,COS转化率随入口COS浓度、气体流速、湿度和氧气浓度的增加而降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周晓霞
陈鹏
李丹婷
李德福
陈怡
马懿星
王学谦
王郎郎
宁平
关键词:  介质阻挡放电  羰基硫  协同  Cu/γ-Al2O3    
Abstract: The coupling of low-temperature plasma and catalyst has been widely used in the purification of gas pollutants due to the combination of high reactivity of low-temperature plasma and high selectivity of catalyst. In this work, using γ-Al2O3 as support, several catalysts differing in active component, i.e., Cu/γ-Al2O3、Mn/γ-Al2O3、Ce/γ-Al2O3、Fe/γ-Al2O3、Co/γ-Al2O3, were prepared. Then the conversion of carbonyl sulfur (COS) by the coupling of dielectric barrier discharge (DBD) low-temperature plasma and the catalysts were studied, in which the influences of factors such as COS initial concentration, flow rate, humidity, and oxygen concentration on COS transformation were analyzed. The results showed that Cu/γ-Al2O3+DBD not only exhibited higher conversion efficiency than the coupling of other catalysts with DBD, but also effectively inhibited the generation of by-products (H2S, SO2, O3), thereby yielding elemental sulfur with high selectivity. By adopting an inlet COS concentration of 1 700 mL/m3, a gas flow rate of 200 mL/min, a relative humidity of 25%, an oxygen concentration of 0.3%, and a specific energy density (SED) of 1 954 J/L, the Cu/γ-Al2O3+DBD coupling achieved a 98.9% conversion of COS, with nearly no by-products generated. In addition, it was found that the COS conversion correlated negatively with each single variable of inlet COS concentration, gas flow rate, humidity, and oxygen concentration.
Key words:  dielectric barrier discharge    carbonyl sulfide    synergy    Cu/γ-Al2O3
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  X511  
基金资助: 云南省重大科技专项计划(202202AG050005);国家重点研发计划(2022YFC3901604)
通讯作者:  * 马懿星,博士,昆明理工大学环境科学与工程学院副教授、硕士研究生导师。目前主要从事低温等离子体催化CO2资源化、臭氧高效分解等方面的研究。mayixing99@kust.edu.cn   
作者简介:  周晓霞,昆明理工大学环境科学与工程学院硕士研究生,在马懿星副教授的指导下进行研究。目前主要研究领域为低温等离子体催化CO2资源化。
引用本文:    
周晓霞, 陈鹏, 李丹婷, 李德福, 陈怡, 马懿星, 王学谦, 王郎郎, 宁平. 介质阻挡放电协同催化剂Cu/γ-Al2O3转化羰基硫[J]. 材料导报, 2025, 39(14): 24030260-6.
ZHOU Xiaoxia, CHEN Peng, LI Danting, LI Defu, CHEN Yi, MA Yixing, WANG Xueqian, WANG Langlang, NING Ping. Conversion of Carbonyl Sulfur Through the Synergistic Effect of Dielectric Barrier Discharge and Catalyst Cu/γ-Al2O3. Materials Reports, 2025, 39(14): 24030260-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030260  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24030260
1 Gao P T, Li Y R, Lin Y T, et al. Journal of Process Engineering, 2023, 23(2), 301(in Chinese).
高攀婷, 李玉然, 林玉婷, 等. 过程工程学报, 2023, 23(2), 301.
2 Zhu C S, Zhao S Z, Tang X L, et al. Materials Reports, 2023, 37(20), 1 (in Chinese).
朱昌盛, 赵顺征, 唐晓龙, 等. 材料导报, 2023, 37(20), 1.
3 Pendyala V R R, Jacobs G, Ma W, et al. Catalysis Today, 2018, 299, 14.
4 Jablonski W S, Villano S M, Dean A M. Applied Catalysis A-General, 2015, 502, 399.
5 Zhao S Z, Yi H H, Tang X L, et al. Chemical Engineering Journal, 2013, 226, 161.
6 Seo M W, Yun Y M, Cho W C, et al. Energy, 2014, 66, 56.
7 Fan G L, Li F, Evans D G, et al. Chemical Society Reviews, 2014, 43, 7040.
8 Wei Z, Zhang X, Zhang F L, et al. Journal of Hazardous Materials, 2021, 407, 1.
9 Yi H H, Li K, Tang X L, et al. Chemical Engineering Journal, 2013, 230, 220.
10 Gharehveran M M, Shah A D. Environmental Science & Technology, 2018, 52, 9108.
11 Liu G, Ning P, Lu F, et al. Surface and Interface Analysis, 2017, 49, 766.
12 Chen X, Gierlich C H, Schoetz S, et al. ACS Sustainable Chemistry & Engineering, 2021, 9, 6561.
13 Zhao S Z, Kang D J, Liu Y P, et al. ACS Catalysis, 2020, 10, 11739.
14 Wang X Q, Qiu J, Ning P, et al. Journal of Hazardous Materials, 2012, 229, 128.
15 Chen G X, Georgieva V, Godfroid T, et al. Applied Catalysis B-Environmental, 2016, 190, 115.
16 Li J, Ma C H, Zhu S J, et al. Nanomaterials, 2019, 9, 1.
17 Wang B F, Chen B X, Sun Y H, et al. Applied Catalysis B-Environmental, 2018, 238, 328.
18 Mei D H, Zhu X B, Wu C F, et al. Applied Catalysis B-Environmental, 2016, 182, 525.
19 Shen L J, Wang G J, Zheng X X, et al. Chinese Journal of Catalysis, 2017, 38, 1373.
20 Song X, Chen X, Sun L N, et al. Chemical Engineering Journal, 2020, 399, 1.
21 Li K, Song X, Ning P, et al. Energy Technology, 2015, 3, 136.
22 Zheng H Y, Qi J, Zhang R G, et al. Fuel Processing Technology, 2014, 128, 310.
23 Gu J N, Liang J, Hu S, et al. Separation and Purification Technology, 2022, 295, 1.
24 He E Y, Huang G, Fan H L, et al. Fuel, 2019, 246, 277.
25 Jin H K, An Z Y, Li Q C, et al. Energy & Fuels, 2021, 35, 8895.
26 Sun Y H, Wu J L, Wang Y L, et al. JACS Au, 2022, 2, 1800.
27 Zhao L. Synergistic decomposition of hydrogen sulfide by Low temperature plasma and semiconductor catalyst. Ph. D. Thesis, Dalian University of Technology, China, 2014 (in Chinese).
赵璐. 低温等离子体与半导体催化剂协同分解硫化氢. 博士学位论文, 大连理工大学, 2014.
28 Xuan K J, Zhu X B, Cai Y X, et al. Catalysts, 2018, 8, 1.
29 Sun Y H. Catalytic reduction of carbon dioxide by non-thermal plasma-Pd/ZnO and its mechanism. Ph. D. Thesis, South China University of Technology, China, 2020 (in Chinese).
孙玉海. 非热等离子体协同Pd/ZnO催化还原二氧化碳性能及反应机理研究. 博士学位论文, 华南理工大学, 2020.
30 Yu J, Zhang W C, Wu X, et al. AIP Advances, 2021, 11, 1.
31 Zhu X B. Mechanism of plasma Co-catalytic removal of volatile organic compounds (VOCs). Ph. D. Thesis, Zhejiang University, China, 2015 (in Chinese).
竺新波. 等离子体协同催化脱除挥发性有机物(VOCs)的机理研究. 博士学位论文, 浙江大学, 2015.
32 Nikiforov A Y, Sarani A, Leys C. Plasma Sources Science & Technology, 2011, 20, 1.
33 Liang X, Zhou W, Wang Z X, et al. Environmental Science and Technology, 2021, 44(9), 190(in Chinese).
梁旭, 周伟, 王梓鑫, 等. 环境科学与技术, 2021, 44(9), 190.
[1] 杨彪, 韩泽民, 段绍米, 黄宏彬, 吴照刚, 彭飞云. 基于混沌博弈理论的多源微波加热温度均匀性优化[J]. 材料导报, 2025, 39(3): 23100217-8.
[2] 方双明, 付娟, 罗洁, 彭祝, 李子玲, 程金科. 无机碱与季铵盐协同改性磷石膏的抗霉特性及物理力学性能研究[J]. 材料导报, 2025, 39(3): 24010006-8.
[3] 屈沅治, 张蝶, 兰雅婧, 任晗, 刘阔, 黄宏军, 梁本亮, 颜鲁婷. 水基钻井液用多元协同纳米润滑剂的研究进展[J]. 材料导报, 2025, 39(2): 23090016-6.
[4] 魏鑫, 焦芬, 刘维, 顾丝雨, 汪辰, 覃文庆. 垃圾飞灰与粉煤灰协同熔融制备CAS体系微晶玻璃的研究[J]. 材料导报, 2025, 39(1): 23120096-8.
[5] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[6] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[7] 徐俊, 康爱红, 吴正光, 龚泳帆, 寇长江, 吴帮伟, 张垚, 肖鹏. 高性能再生微粉基地聚合物注浆料的活化制备及性能研究[J]. 材料导报, 2024, 38(22): 24060235-6.
[8] 周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
[9] 唐昭敏, 赵健清, 周建仁, 唐婉兰, 魏佳元, 韩秉锟, 吕文轩. 交联诱导重组装多重刺激响应型聚合物胶束的制备及抗肿瘤应用[J]. 材料导报, 2024, 38(14): 23020219-6.
[10] 宗学文, 刘亮晶, 田航, 王涛, 韦毅博. 不同SiC/ZnO含量对光敏树脂固化特性及力学性能的影响[J]. 材料导报, 2024, 38(11): 22060235-7.
[11] 刘雄飞, 侯冠宇, 蔡华崇, 李之建. 协同连续布筋增韧喷射3D打印混凝土的抗弯性能[J]. 材料导报, 2024, 38(1): 22090102-6.
[12] 叶慧, 沈天成, 陈远志, 徐进. 太阳能电池用球形银颗粒的液相法制备研究[J]. 材料导报, 2024, 38(1): 22050236-5.
[13] 安树好, 刘娟红, 张月月, 李康. 矿渣粉与超细铁尾矿粉在无熟料固结体中的协同水化机制[J]. 材料导报, 2023, 37(22): 22080235-10.
[14] 李松琦, 曲家福, 胡俊蝶, 杨晓刚, 李长明. 光热催化二氧化碳还原合成高附加值化学品的研究进展[J]. 材料导报, 2023, 37(22): 22050159-8.
[15] 唐昭敏, 江舒婷, 王郁东, 唐婉兰, 舒娟, 张骥阳, 何浩洋, 陈孔军. 负载过氧化铜的介孔二氧化硅纳米粒子协同化学动力学疗法和化疗联合治疗肿瘤[J]. 材料导报, 2023, 37(21): 22050131-5.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed