Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24040216-14    https://doi.org/10.11896/cldb.24040216
  高分子与聚合物基复合材料 |
贵金属(Pt/Pd/Ru)/分子筛在油脂加氢脱氧制备高品质烃类液体燃料中的研究进展
聂懿宸1,2,3, 李帅哲1,2,3, KeomeesayPhidsavard1, 顾雯1,2,3, 张伟1,2,3,4, 刘娜1,2,3,4, 徐高翔1,2,3,4, 刘莹1,2,3,4, 李兴勇1,2,3,4,*, 陈玉保1,2,3,4,*
1 云南师范大学能源与环境科学学院,昆明 650500
2 云南省教育厅生物质绿色能源与平台化合物重点实验室,昆明 650500
3 云南省低碳农业绿色发展技术国际研发中心,昆明 650500
4 云南省农村能源工程重点实验室,昆明 650500
Research Progress on Noble Metals (Pt/Pd/Ru)/Molecular Sieve in the Preparation of High-quality Hydrocarbon Liquid Fuels Through Hydrodeoxygenation of Fats and Oils
NIE Yichen1,2,3, LI Shuaizhe1,2,3, Keomeesay Phidsavard1, GU Wen1,2,3, ZHANG Wei1,2,3,4, LIU Na1,2,3,4, XU Gaoxiang1,2,3,4, LIU Ying1,2,3,4, LI Xingyong1,2,3,4,*, CHEN Yubao1,2,3,4,*
1 School of Energy and Environmental Sciences, Yunnan Normal University, Kunming 650500, China
2 Key Laboratory of Biomass Green Energy and Platform Compounds, Yunnan Provincial Department of Education, Kunming 650500, China
3 International R&D Centre for Low Carbon Agriculture and Green Development Technology of Yunnan Province, Kunming 650500, China
4 Key Laboratory of Rural Energy Engineering of Yunnan Province, Kunming 650500, China
下载:  全 文 ( PDF ) ( 33145KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着“双碳”目标的提出,发展清洁、可再生的生物烃类液体燃料变得尤为重要。油脂热催化加氢脱氧作为当前制备生物烃类燃油最受欢迎的技术之一,其关键在于催化剂的选用,贵金属催化剂因其卓越的催化效率和选择性备受关注。本文综述了近年来贵金属催化剂在油脂加氢脱氧反应中的应用和研究进展,重点讨论了油脂加氢反应过程和不同贵金属催化剂的催化机理。从分子筛的遴选、活性组分的选取和制备方法三个方面分析了影响贵金属催化剂催化性能的关键因素,着重探讨了不同种类的分子筛载体及催化剂的制备方法对催化反应的影响。最后,对贵金属催化油脂加氢面临的挑战和未来的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
聂懿宸
李帅哲
KeomeesayPhidsavard
顾雯
张伟
刘娜
徐高翔
刘莹
李兴勇
陈玉保1
2
3
4
关键词:  贵金属催化剂  油脂  加氢脱氧  催化机理  烃类液体燃料    
Abstract: The development of sustainable and environmentally friendly bio-hydrocarbon liquid fuels has become particularly significant since the establishment of the carbon peak and carbon neutrality targets. Thermal catalytic hydrodeoxygenation of fats and oils, one of the most prevalent methods for producing bio-hydrocarbon fuels, is critically dependent on catalyst selection, and noble metal catalysts have received a lot of attention due to their high catalytic efficiency and selectivity. This review summarizes recent applications and research advancement of noble metal catalysts in the hydrodeoxygenation of fats and oils, including the processes of fats and oils hydrogenation and the mechanism of various noble metal catalysts. The fundamental parameters influencing the effectiveness of noble metal catalysts are examined from three perspectives:molecular sieve selection, active component selection and preparation approach, particularly an emphasis on the effect of various types of molecular sieves on catalytic reactions and catalyst preparation. Furthermore, discusses the issues associated with noble metal catalyzed oil and grease hydroge-nation, as well as potential future research directions.
Key words:  noble metal catalysts    fats and oils    hydrodeoxygenation    catalytic mechanism    hydrocarbon liquid fuels
发布日期:  2025-05-29
ZTFLH:  TK6  
基金资助: 国家自然科学基金(22469024);云南省基础研究计划面上项目(202501CF070001);云南省国际科技特派员(个人)认定(202403AK140049);云南省基础研究计划重点项目(202301AS070011); 云南省低碳发展引导专项(云财资环[2021]135号);云南省科技人才与平台计划(202105AC160058);云南省教育厅重点实验室(云教发[2024]5号);云南省院士专家工作站(202205AF150024)
通讯作者:  *李兴勇,云南师范大学能源与环境科学学院教师、硕士研究生导师。目前主要从事油脂加氢催化制备烃基生物柴油与航空煤油的研究。xingyong@ynnu.edu.cn
陈玉保,云南师范大学能源与环境科学学院教授、博士研究生导师。目前主要从事生物质开发与利用、烟草化学和能源化工等方面的研究工作。chenyubao@ynnu.edu.cn   
作者简介:  聂懿宸,现为云南师范大学能源与环境科学学院硕士研究生,主要研究领域为油脂加氢脱氧制备生物航空煤油。
引用本文:    
聂懿宸, 李帅哲, KeomeesayPhidsavard, 顾雯, 张伟, 刘娜, 徐高翔, 刘莹, 李兴勇, 陈玉保1,2,3,4. 贵金属(Pt/Pd/Ru)/分子筛在油脂加氢脱氧制备高品质烃类液体燃料中的研究进展[J]. 材料导报, 2025, 39(11): 24040216-14.
NIE Yichen, LI Shuaizhe, Keomeesay Phidsavard, GU Wen, ZHANG Wei, LIU Na, XU Gaoxiang, LIU Ying, LI Xingyong, CHEN Yubao. Research Progress on Noble Metals (Pt/Pd/Ru)/Molecular Sieve in the Preparation of High-quality Hydrocarbon Liquid Fuels Through Hydrodeoxygenation of Fats and Oils. Materials Reports, 2025, 39(11): 24040216-14.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040216  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24040216
1 Long F, Liu W, Jiang X, et al. Renewable and Sustainable Energy Reviews, 2021, 148, 111269.
2 Liu M L, Wei H, Gai Y L, et al. Coal Chemical Industry, 2022, 50(2), 1(in Chinese).
刘明亮, 卫浩, 盖玉龙. 煤化工, 2022, 50(2), 1.
3 Xu J, Jiang J, Zhao J. Renewable and Sustainable Energy Reviews, 2016, 58, 331.
4 Olkuski T, Suwała W, Wyrwa A, et al. Open Chemistry, 2021, 19(1), 503.
5 Patchimpet J, Simpson B K, Sangkharak K, et al. Renewable Energy, 2020, 153, 861.
6 Ameen M, Azizan M T, Yusup S, et al. Renewable and Sustainable Energy Reviews, 2017, 80, 1072.
7 Wang F, Jiang J, Wang K, et al. Applied Catalysis B:Environmental, 2019, 242, 150.
8 Wang J, Azam W. Geoscience Frontiers, 2024, 15(2), 101757.
9 Pattanaik B P, Misra R D. Renewable and Sustainable Energy Reviews, 2017, 73, 545.
10 Dey S, Reang N M, Das P K, et al. Journal of Cleaner Production, 2021, 286, 124981.
11 Veriansyah B, Han J Y, Kim S K, et al. Fuel, 2012, 94, 578.
12 Liu Z T, Mei J L, Wang C H, et al. Advances in Chemical Engineering, 2023(5), 1 (in Chinese).
刘振涛, 梅金林, 王春雅, 等. 化工进展, 2023(5), 1.
13 Gong S F, Gong J Y, Lei W Q, et al. China Oils and Fats, 2022, 47(8), 82 (in Chinese).
龚绍峰, 龚建议, 雷稳强, 等. 中国油脂, 2022, 47(8), 82.
14 Hongloi N, Prapainainar P, Prapainainar C. Molecular Catalysis, 2022, 523, 397.
15 Long F, Zhai Q, Liu P, et al. Renewable Energy, 2020, 157, 1072.
16 Wagenhofer M F, Baráth E, Gutiérrez O Y, et al. ACS Catalysis, 2017, 7(2), 1068, 4955.
17 Xing S, Liu Y, Liu X, et al. Applied Catalysis B:Environmental, 2020, 269, 4955.
18 Li T, Cheng J, Huang R, et al. International Journal of Hydrogen Energy, 2016, 41(47), 21883.
19 Li T, Cheng J, Huang R, et al. Bioresour Technology, 2015, 197, 289.
20 Kim M Y, Kim J-K, Lee M-E, et al. ACS Catalysis, 2017, 7(9), 6256.
21 Rabaev M, Landau M V, Vidruk-Nehemya R, et al. Fuel, 2015, 161, 287.
22 Lim J H K, Gan Y Y, Ong H C, et al. Renewable and Sustainable Energy Reviews, 2021, 149, 111396.
23 Lahijani P, Mohammadi M, Mohamed A R, et al. Energy Conversion and Management, 2022, 268, 615.
24 Cao S, Yang R, Shi L, et al. KSCE Journal of Civil Engineering, 2018, 23(2), 576.
25 Li R, Yan H, Dang Y, et al. Molecular Catalysis, 2019, 479, 110588.
26 Li F, Jiang J, Liu P, et al. Sustainable Energy & Fuels, 2018, 2(6), 1206.
27 Bosnar S, Rac V, Stošić D, et al. Microporous and Mesoporous Materials, 2022, 329, 461.
28 Jin S, Xiao Z, Li C, et al. Journal of Energy Chemistry, 2014, 23(2), 185.
29 Shen Z, Zhang G, Shi C, et al. Fuel, 2023, 334, 126317.
30 Restrepo-Garcia J R, Gomora-Herrera D, Torres-Mancera P, et al. Fuel, 2023, 351, 128890.
31 Li L, Quan K, Xu J, et al. Green Chemistry, 2013, 15(9), 790.
32 Yu S, Cao X, Li L, et al. Catalysis Letters, 2018, 148(12), 3787.
33 Zheng Z, Wang J, Wei Y, et al. Journal of Analytical and Applied Pyrolysis, 2019, 143, 104693.
34 Zeng Y, Wang Z, Lin W, et al. Chemical Engineering Journal, 2017, 320, 55.
35 Serrano D P, Escola J M, Briones L, et al. Microporous and Mesoporous Materials, 2019, 280, 88.
36 Lee S P, Ramli A. Chemistry Central Journal, 2013, 7(1), 149.
37 Zhang M, Chen Y, Wang L, et al. Industrial & Engineering Chemistry Research, 2016, 55(21), 6069.
38 Jiménez-Cruz F, Laredo G C. Fuel, 2004, 83(16), 2183.
39 Chen N, Gong S, Shirai H, et al. Applied Catalysis A:General, 2013, 466, 105.
40 Wang C, Tian Z, Wang L, et al. ChemSusChem, 2012, 5(10), 1974.
41 Chen Y, Li X, Liu S, et al. Industrial Crops and Products, 2020, 146.
42 Chen N, Ren Y, Qian E W. Journal of Catalysis, 2016, 334, 79.
43 Zhao X, Wei L, Cheng S, et al. Catalysts, 2017, 7(12), 377.
44 Kon K, Toyao T, Onodera W, et al. ChemCatChem, 2017, 9(14), 2822.
45 Ouyang Q, Yao J, Yang N, et al. Catalysis Communications, 2019, 120, 46.
46 Lian C X, Li N, Jiang Wu, et al. Advances in Chemical Engineering, 2020, 39(S1), 153(in Chinese).
练彩霞, 李凝, 蒋武, 等. 化工进展, 2020, 39(S1), 153.
47 Zhang C, Zhang Z, Hao C, et al. Catalysis Communications, 2021, 155, 106288.
48 Santos J L, Alda-Onggar M, Fedorov V, et al. Applied Catalysis A:Ge-neral, 2018, 561, 137.
49 Deng Q, Peng H, Yang Z, et al. Applied Catalysis B:Environmental, 2023, 337, 122982.
50 Xu X, Yang H, Tu R, et al. Applied Catalysis B:Environmental, 2024, 342, 123358.
51 Srifa A, Faungnawakij K, Itthibenchapong V, et al. Chemical Engineering Journal, 2015, 278, 249.
52 Hunsiri W, Chaihad N, Ngamcharussrivichai C, et al. Fuel Processing Technology, 2023, 248, 107825.
53 Suppino R S, Landers R, Cobo A J G. Applied Catalysis A:General, 2016, 525, 41.
54 Bokov D, Turki Jalil A, Chupradit S, et al. Advances in Materials Science and Engineering, 2021, 2021, 1.
55 Sakka S. Journal of Sol-Gel Science and Technology, 2021, 102(3), 478.
56 Li Y, Yang X, Zhu L, et al. RSC Advances, 2015, 5(98), 80388.
57 Megersa D D, Gudena G T, Kim Y, et al. Advanced Sustainable Systems, 2023, 7(11), 2300257.
58 Pant M, Singh R, Negi P, et al. Materials Today:Proceedings, 2021, 46, 11250.
59 Raimundo R A, Silva T R, Santos J R D, et al. MRS Communications, 2023, 13(2), 276.
60 Madsen A T, Ahmed E H, Christensen C H, et al. Fuel, 2011, 90(11), 3433.
61 Peng B, Yao Y, Zhao C, et al. Angew Chemie International Edition, 2012, 51(9), 2072.
62 Kubika D, Kaluža L. Applied Catalysis A:General, 2010, 372(2), 199.
63 Deliy I V, Vlasova E N, Nuzhdin A L, et al. RSC Advances, 2014, 4(5), 2242.
64 Coumans A E, Hensen E J M. Applied Catalysis B:Environmental, 2017, 201, 290.
65 Monnier J, Sulimma H, Dalai A, et al. Applied Catalysis A:General, 2010, 382(2), 176.
66 Xin H, Guo K, Li D, et al. Applied Catalysis B:Environmental, 2016, 187, 375.
67 Li S, Xia Y, Ou Y, et al. ACS Catalysis, 2024, 14(3), 1608.
68 Sharma S, Maurer F, Lott P, et al. ChemCatChem, 2024, 16(14), e202301655.
69 Batista R, Carrera A, Beretta A, et al. Catalysts, 2019, 9(6), 532.
70 Zhou J, Zhao J, Zhang J, et al. Chinese Journal of Catalysis, 2020, 41(7), 1048.
71 Zhou L, Lawal A. Catalysis Science & Technology, 2016, 6(5), 1442.
72 Jeong H, Shin M, Jeong B, et al. Journal of Industrial and Engineering Chemistry, 2020, 83, 189.
73 Gage S H, Engelhardt J, Menart M J, et al. ACS Omega, 2018, 3(7), 7681.
[1] 董梦娇, 徐洋洋, 李净珊, 叶仪鹏, 李秉芯, 陈昊天. 氮掺杂碳纳米纤维负载Co-N-C纳米片用于电催化氧还原反应[J]. 材料导报, 2025, 39(11): 24040222-7.
[2] 彭林森, 李凝, 蒋武, 练彩霞. A位缺陷对LaxNiO3+δ在苯酚加氢脱氧反应中催化性能的影响[J]. 材料导报, 2024, 38(23): 23070161-5.
[3] 宋杰, 丁红蕾, 潘卫国, 张凯, 马骏驰, 张子沂. 二氧化锰基催化剂催化氧化甲苯的进展[J]. 材料导报, 2024, 38(13): 23030015-11.
[4] 宋冬梅, 郑秋燕, 潘廷仙, 胡长刚, 同鑫, 田娟. ZIFs材料对Fe/N/C催化剂氧还原性能的影响[J]. 材料导报, 2024, 38(10): 22100278-7.
[5] 林博文, 徐亦冬, 余德密. MgAl-LDHs/TiO2复合光催化剂的制备及光催化性能[J]. 材料导报, 2023, 37(19): 22050098-6.
[6] 李洁. 多孔富缺陷半导体应用于光催化降解废水有机污染物[J]. 材料导报, 2023, 37(12): 21110143-9.
[7] 王思弘, 宋钫. 金属氧化物电催化析氧机理的研究进展[J]. 材料导报, 2022, 36(23): 21030163-13.
[8] 李世杰, 黄慧娟, 文世涛, 马建锋, 刘杏娥. 负载型贵金属催化剂氧化分解甲醛的研究进展[J]. 材料导报, 2020, 34(Z1): 400-407.
[9] 谢旭豪, 许胜超, 徐志勇, 赵文波. 硫醇类化合物合成工艺与方法[J]. 材料导报, 2020, 34(7): 7168-7176.
[10] 解婕, 包桂蓉, 孟一鸣, 杨智翔, 何涛. 超临界甲醇中2,3-二氢苯并呋喃加氢脱氧的理论研究[J]. 材料导报, 2018, 32(6): 977-982.
[11] 王霏, 徐俊明, 蒋剑春, 刘朋, 周明浩, 王奎. 油脂加氢制备生物柴油用催化剂的研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 765-771.
[12] 张静静, 孙 杰, 李吉刚, 周 添, 陈立泉. 用于CO低温氧化负载型纳米金催化剂研究进展[J]. 材料导报, 2017, 31(1): 136-142.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed