Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24070140-7    https://doi.org/10.11896/cldb.24070140
  金属与金属基复合材料 |
不同氮气流量对等离子弧熔覆TiNx/Ti合金涂层微观组织及摩擦学性能的影响
胡少青1,2, 岳赟1,3,*, 平静艳3, 邓四二1, 杜三明1
1 河南科技大学高端轴承摩擦学技术与应用国家地方联合工程实验室,河南 洛阳 471023
2 河南科技大学材料科学与工程学院,河南 洛阳 471023
3 八环科技集团股份有限公司博士后工作站,浙江 台州 318000
Effect of Different Nitrogen Flow Rates on Microstructure and Tribological Properties of TiNx/Ti Alloy Coatings by Plasma Arc Cladding
HU Shaoqing1,2, YUE Yun1,3,*, PING Jingyan3, DENG Sier1, DU Sanming1
1 National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, Henan, China
2 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
3 Post-Doctoral Workstation, Bahuan Technology Group Company, Limited, Taizhou 318000, Zhejiang, China
下载:  全 文 ( PDF ) ( 42588KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高钛锆基合金Ti-20Zr-6.5Al-4V(简称T20Z)的摩擦磨损性能,采用等离子弧熔覆技术,通过不同流量(300、350、400、450 L/h)氮气同步送粉的方式,在T20Z合金表面原位生成氮化物增强钛合金复合涂层。使用金相显微镜、X射线衍射仪(XRD)、维氏显微硬度计、UMT-2多功能摩擦磨损试验机、三维形貌仪以及扫描电子显微镜(SEM)对熔覆涂层的组织、物相、硬度以及摩擦磨损性能进行分析与表征。结果表明,300~450 L/h氮气流量熔覆均能获得与基体具有良好冶金结合的TiNx/Ti合金涂层,其中基体为α相,增强相为TiN0.3与TiN相。随着氮气流量的增大,TiN0.3不断增多,涂层硬度逐渐提高,当气体流量升至450 L/h时,TiN衍射峰出现,硬度达到最大值1 036HV0.2,与基体相比提升640HV0.2。相较于原始试样,熔覆涂层的耐磨性也有所提高,且随着氮气流量的提升,其耐磨损性能呈现出先升后降的变化趋势,10 N载荷、400 L/h气流量时最为明显,耐磨性提高46.08%。涂层的磨损机制由原始试样的严重磨粒磨损逐渐转变为轻微的磨粒磨损与局部的粘着磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡少青
岳赟
平静艳
邓四二
杜三明
关键词:  等离子弧熔覆  T20Z合金  氮化物  组织  硬度  摩擦磨损    
Abstract: In order to improve the friction and wear performance of TiZr-based alloy Ti-20Zr-6.5Al-4V (referred to as T20Z), plasma arc cladding technology was used to generate in-situ nitride reinforced titanium alloy composite coatings on the surface of T20Z alloy through synchronous powder feeding at different nitrogen flow rates (300, 350, 400, 450 L/h). The microstructure, phase composition, hardness, and friction and wear properties of the coatings were analyzed and characterized by metallographic microscopy, X-ray diffractometer (XRD), Vickers hardness tester, UMT-2 multifunctional tribometer, three-dimension profilometer, and scanning electron microscope (SEM). The results show that the nitride reinforced titanium alloy composite coatings with excellent metallurgical bonding with the substrate can be obtained by nitrogen flow rate cladding at 300—450 L/h, where the substrate phase is α phase, and the reinforcing phases are TiN0.3 and TiN. As the nitrogen flow rate increases, the TiN0.3 phase increase continuously, and the hardness of the coatings gradually increases. When the nitrogen flow rate reaches 450 L/h, the TiN diffraction peak begins to appear, and the hardness has a maximum value of 1 036HV0.2, which is 640HV0.2 higher than the substrate. Compared with the untreated samples, the wear resistance of the coatings has been improved, and with the increase of nitrogen flow rate, their wear resistance shows a trend of first increasing and then decreasing. The most obvious change is when the load is 10 N and the nitrogen flow rate is 400 L/h, with an increase of 46.08% in wear resistance. The wear mechanism of the coatings gradually changes from severe abrasive wear of the untreated samples to mild abrasive wear and local adhesive wear.
Key words:  plasma arc cladding    T20Z titanium alloy    nitride    microstructure    hardness    friction and wear
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  TG148  
基金资助: 国家自然科学基金 (51801054);河南省重大科技专项 (221100210500)
通讯作者:  * 岳赟,河南科技大学副教授、硕士研究生导师。目前主要从事钛合金表面改性及摩擦学性能表征等方面的研究。yueyunbw@haust.edu.cn   
作者简介:  胡少青,河南科技大学材料科学与工程学院硕士研究生,目前从事钛锆基合金表面改性及摩擦学性能研究。
引用本文:    
胡少青, 岳赟, 平静艳, 邓四二, 杜三明. 不同氮气流量对等离子弧熔覆TiNx/Ti合金涂层微观组织及摩擦学性能的影响[J]. 材料导报, 2025, 39(14): 24070140-7.
HU Shaoqing, YUE Yun, PING Jingyan, DENG Sier, DU Sanming. Effect of Different Nitrogen Flow Rates on Microstructure and Tribological Properties of TiNx/Ti Alloy Coatings by Plasma Arc Cladding. Materials Reports, 2025, 39(14): 24070140-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070140  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24070140
1 Lin N, Huang X, Zhang X, et al. Applied Surface Science, 2012, 258(18), 7047.
2 Ochonogor O F, Meacock C, Abdulwahab M, et al. Applied Surface Science, 2012, 263, 591.
3 Chen M Y, Shi B M, Huang S M, et al. Materials(Basel, Switzerland), 2020, 13(21), 4882.
4 Qiu J W, Xu H M, Liu H P, et al. Lubrication Engineering, 2022, 47(11), 124(in Chinese).
邱敬文, 许惠明, 刘涣平, 等. 润滑与密封, 2022, 47(11), 124.
5 Wu X Y, Zhang H, Xu X J, et al. Petrochemical Industry Application, 2016, 35(11), 105(in Chinese).
吴欣袁, 张恒, 徐学军, 等. 石油化工应用, 2016, 35(11), 105.
6 Mao Y S, Wang L, Chen K M, et al. Wear:an International Journal on the Science and Technology of Friction, Lubrication and Wear, 2013, 297, 1032.
7 Liu Q, Xie J F, Zhao M F, et al. Rare Metal Materials and Engineering, 2023, 52(1), 195(in Chinese).
刘强, 谢俊峰, 赵密锋, 等. 稀有金属材料与工程, 2023, 52(1), 195.
8 Li Z F, Li Z Q, Zhao P J, et al. Development and Application of Materials, 2014, 29(4), 43(in Chinese).
李兆峰, 李志强, 赵朋举, 等. 材料开发与应用, 2014, 29(4), 43.
9 Cheng W T, Ma J, Wei J Z, et al. Acta Armamentarii, 2020, 41(11), 2320(in Chinese).
程文涛, 马捷, 魏建忠, 等. 兵工学报, 2020, 41(11), 2320.
10 Atar E, Kayali E S, Cimenoglu H. Surface & Coatings Technology, 2008, 202(19), 4583.
11 Ji S C, Li Z X, Luo X F, et al. Rare Metal Materials and Engineering, 2014, 43(12), 3114(in Chinese).
姬寿长, 李争显, 罗小峰, 等. 稀有金属材料与工程, 2014, 43(12), 3114.
12 Jin G D, You T, Chai N, et al. Foundry, 2021, 70(4), 486(in Chinese).
金国栋, 游涛, 柴能, 等. 铸造, 2021, 70(4), 486.
13 Li X N, Luo Z F. Electroplating & Finishing, 2020, 39(7), 416(in Chinese).
李小妮, 罗志峰. 电镀与涂饰, 2020, 39(7), 416.
14 Zhang J C, Shi S H, Gong Y Q, et al. Surface Technology, 2020, 49(10), 1(in Chinese).
张津超, 石世宏, 龚燕琪, 等. 表面技术, 2020, 49(10), 1.
15 Wang L X, Huang Y M, Yu Y X, et al. Surface & Coatings Technology, 2022, 429, 127942.
16 Du B S, Xu G X, Zhang Z W, et al. Surface Technology, 2019, 48(10), 214(in Chinese).
杜宝帅, 胥国祥, 张忠文, 等. 表面技术, 2019, 48(10), 214.
17 Shi Y, Du X D, Zhuang P C, et al. Surface Technology, 2019, 48(12), 23(in Chinese).
时运, 杜晓东, 庄鹏程, 等. 表面技术, 2019, 48(12), 23.
18 Feng Z Q, Tang M Q, Liu Y Q, et al. Surface Engineering, 2018, 34(4), 309.
19 Shi B M, Huang S M, Zhu P, et al. Materials Letters, 2020, 276, 128093.
20 Jing R. Preparation, structure and properties of high strength TiZr-based alloy. Ph. D. Thesis, Yanshan University, China, 2013(in Chinese).
景然. 高强度TiZrAlV合金的制备及组织性能研究. 博士学位论文, 燕山大学, 2013.
21 Lv Y Y, Yue Y, Du Z H, et al. Materials Reports, 2022, 36(17), 167(in Chinese).
吕源远, 岳赟, 杜志浩, 等. 材料导报, 2022, 36(17), 167.
22 Du Z H, Yue Y, Lv Y Y, et al. China Surface Engineering, 2023, 36(3), 132(in Chinese).
杜志浩, 岳赟, 吕源远, 等. 中国表面工程, 2023, 36(3), 132.
23 Hu C, Xin H, Watson L M, et al. Acta Materialia, 1997, 45(10), 4311.
24 Ma G Y, Liu X, Song C C, et al. Additive Manufacturing, 2022, 59(PA), 103087.
25 Cui H W, Cui X F, Wang H D, et al. Chinese Journal of Rare Metals, 2014, 38(6), 999(in Chinese).
崔华威, 崔秀芳, 王海斗, 等. 稀有金属, 2014, 38(6), 999.
26 Feng Z H, Liu Z H, Meng D Z, et al. Journal of Materials Research and Technology, 2023, 24, 928.
27 Yilbas B S, Hashmi M S J. Journal of Materials Processing Technology, 2000, 103(2), 304.
28 Kamat M A, Copley M S, Todd A J. Acta Materialia, 2016, 107, 72.
29 Fu Y, Zhang X C, Sui J F, et al. Optics and Laser Technology, 2015, 67, 78.
30 Zhang X C, Liu Z D, Xu J S, et al. Surface and Coatings Technology, 2013, 228, S107.
31 Bi X Q, Hu X L, Wang J. Journal of Aeronautical Materials, 2009, 29(3), 45(in Chinese).
毕晓勤, 胡小丽, 王洁. 航空材料学报, 2009, 29(3), 45.
32 Xia D, Xu B S, Lv Y H, et al. Heat Treatment of Metals, 2008, 33(9), 9(in Chinese).
夏丹, 徐滨士, 吕耀辉, 等. 金属热处理, 2008, 33(9), 9.
33 Yao X C. Study on laser gas nitriding process and properties of TC4 titanium alloy surface. Master's Thesis, Lanzhou University of Technology, China, 2019(in Chinese).
姚小春. TC4钛合金表面激光气体氮化工艺及性能研究. 硕士学位论文, 兰州理工大学, 2019.
34 Kamat M A, Segall E A, Copley M S, et al. Surface & Coatings Technology, 2017, 325, 229.
35 Yang J Q, Le K, Chen H, et al. International Journal of Precision Engineering and Manufacturing, 2023, 24(4), 607.
36 Magaziner R S, Jain V K, Mall S. Wear, 2008, 267(1), 368.
37 Li T, Liu Y M, Wang C, et al. Chinese Journal of Vacuum Science and Technology, 2018, 38(9), 755(in Chinese).
李彤, 刘艳明, 王晨, 等. 真空科学与技术学报, 2018, 38(9), 755.
[1] 张陕南, 侯江涛, 沈元勋, 钟素娟, 秦建, 龙伟民. 银铜复合带在低过载电流下沿界面分断的失效机理研究[J]. 材料导报, 2025, 39(9): 24040030-5.
[2] 彭润玲, 王威, 刘锦悦, 高展, 郭俊德, 张耿. 冻干法制备石墨烯负载二硫化钼及其润滑性能研究[J]. 材料导报, 2025, 39(8): 24020011-7.
[3] 曾琦, 倪浩涵, 刘伟, 黎超超, 王江伟. 增材制造GH3536回流燃烧室火焰筒主燃孔的微观组织演变与裂纹扩展行为[J]. 材料导报, 2025, 39(8): 24040055-4.
[4] 脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
[5] 黄晗冰, 王培, 乔石, 马如龙, 郝振华, 舒永春, 何季麟. Cu-0.9Be-1.5Ni-0.04Y合金的摩擦磨损与电化学腐蚀性能研究[J]. 材料导报, 2025, 39(7): 24010241-8.
[6] 梅婷, 徐洪扬, 李逊, 龙运伟, 唐华, 李志鹏, 邹爱华. 柱塞泵关键摩擦副中复杂黄铜与硅锰黄铜的微观组织与耐磨特性研究[J]. 材料导报, 2025, 39(7): 24080117-5.
[7] 谭会杰, 王海燕, 华连庚, 高雪云, 吕萌, 于大威, 邢磊. 稀土Ce对Fe-Ni-Al马氏体时效钢等温过程显微组织演变的影响[J]. 材料导报, 2025, 39(7): 24010236-6.
[8] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[9] 涂文斌, 胡志华, 邹雨柔, 刘冠鹏, 王善林, 陈玉华. 时效时间和Sb添加对Sn-9Zn-3Bi/Cu焊点界面金属间化合物生长行为的影响[J]. 材料导报, 2025, 39(6): 23120193-6.
[10] 姚通睿, 王曼, 席晓丽. 含Al耐热合金高温氧化行为研究现状[J]. 材料导报, 2025, 39(6): 24050040-10.
[11] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[12] 姚未怡, 卜恒勇. 轧制态7050铝合金双道次热变形微观组织演变[J]. 材料导报, 2025, 39(4): 23120032-8.
[13] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[14] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[15] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed