Effect of Different Nitrogen Flow Rates on Microstructure and Tribological Properties of TiNx/Ti Alloy Coatings by Plasma Arc Cladding
HU Shaoqing1,2, YUE Yun1,3,*, PING Jingyan3, DENG Sier1, DU Sanming1
1 National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, Henan, China 2 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China 3 Post-Doctoral Workstation, Bahuan Technology Group Company, Limited, Taizhou 318000, Zhejiang, China
Abstract: In order to improve the friction and wear performance of TiZr-based alloy Ti-20Zr-6.5Al-4V (referred to as T20Z), plasma arc cladding technology was used to generate in-situ nitride reinforced titanium alloy composite coatings on the surface of T20Z alloy through synchronous powder feeding at different nitrogen flow rates (300, 350, 400, 450 L/h). The microstructure, phase composition, hardness, and friction and wear properties of the coatings were analyzed and characterized by metallographic microscopy, X-ray diffractometer (XRD), Vickers hardness tester, UMT-2 multifunctional tribometer, three-dimension profilometer, and scanning electron microscope (SEM). The results show that the nitride reinforced titanium alloy composite coatings with excellent metallurgical bonding with the substrate can be obtained by nitrogen flow rate cladding at 300—450 L/h, where the substrate phase is α phase, and the reinforcing phases are TiN0.3 and TiN. As the nitrogen flow rate increases, the TiN0.3 phase increase continuously, and the hardness of the coatings gradually increases. When the nitrogen flow rate reaches 450 L/h, the TiN diffraction peak begins to appear, and the hardness has a maximum value of 1 036HV0.2, which is 640HV0.2 higher than the substrate. Compared with the untreated samples, the wear resistance of the coatings has been improved, and with the increase of nitrogen flow rate, their wear resistance shows a trend of first increasing and then decreasing. The most obvious change is when the load is 10 N and the nitrogen flow rate is 400 L/h, with an increase of 46.08% in wear resistance. The wear mechanism of the coatings gradually changes from severe abrasive wear of the untreated samples to mild abrasive wear and local adhesive wear.
胡少青, 岳赟, 平静艳, 邓四二, 杜三明. 不同氮气流量对等离子弧熔覆TiNx/Ti合金涂层微观组织及摩擦学性能的影响[J]. 材料导报, 2025, 39(14): 24070140-7.
HU Shaoqing, YUE Yun, PING Jingyan, DENG Sier, DU Sanming. Effect of Different Nitrogen Flow Rates on Microstructure and Tribological Properties of TiNx/Ti Alloy Coatings by Plasma Arc Cladding. Materials Reports, 2025, 39(14): 24070140-7.
1 Lin N, Huang X, Zhang X, et al. Applied Surface Science, 2012, 258(18), 7047. 2 Ochonogor O F, Meacock C, Abdulwahab M, et al. Applied Surface Science, 2012, 263, 591. 3 Chen M Y, Shi B M, Huang S M, et al. Materials(Basel, Switzerland), 2020, 13(21), 4882. 4 Qiu J W, Xu H M, Liu H P, et al. Lubrication Engineering, 2022, 47(11), 124(in Chinese). 邱敬文, 许惠明, 刘涣平, 等. 润滑与密封, 2022, 47(11), 124. 5 Wu X Y, Zhang H, Xu X J, et al. Petrochemical Industry Application, 2016, 35(11), 105(in Chinese). 吴欣袁, 张恒, 徐学军, 等. 石油化工应用, 2016, 35(11), 105. 6 Mao Y S, Wang L, Chen K M, et al. Wear:an International Journal on the Science and Technology of Friction, Lubrication and Wear, 2013, 297, 1032. 7 Liu Q, Xie J F, Zhao M F, et al. Rare Metal Materials and Engineering, 2023, 52(1), 195(in Chinese). 刘强, 谢俊峰, 赵密锋, 等. 稀有金属材料与工程, 2023, 52(1), 195. 8 Li Z F, Li Z Q, Zhao P J, et al. Development and Application of Materials, 2014, 29(4), 43(in Chinese). 李兆峰, 李志强, 赵朋举, 等. 材料开发与应用, 2014, 29(4), 43. 9 Cheng W T, Ma J, Wei J Z, et al. Acta Armamentarii, 2020, 41(11), 2320(in Chinese). 程文涛, 马捷, 魏建忠, 等. 兵工学报, 2020, 41(11), 2320. 10 Atar E, Kayali E S, Cimenoglu H. Surface & Coatings Technology, 2008, 202(19), 4583. 11 Ji S C, Li Z X, Luo X F, et al. Rare Metal Materials and Engineering, 2014, 43(12), 3114(in Chinese). 姬寿长, 李争显, 罗小峰, 等. 稀有金属材料与工程, 2014, 43(12), 3114. 12 Jin G D, You T, Chai N, et al. Foundry, 2021, 70(4), 486(in Chinese). 金国栋, 游涛, 柴能, 等. 铸造, 2021, 70(4), 486. 13 Li X N, Luo Z F. Electroplating & Finishing, 2020, 39(7), 416(in Chinese). 李小妮, 罗志峰. 电镀与涂饰, 2020, 39(7), 416. 14 Zhang J C, Shi S H, Gong Y Q, et al. Surface Technology, 2020, 49(10), 1(in Chinese). 张津超, 石世宏, 龚燕琪, 等. 表面技术, 2020, 49(10), 1. 15 Wang L X, Huang Y M, Yu Y X, et al. Surface & Coatings Technology, 2022, 429, 127942. 16 Du B S, Xu G X, Zhang Z W, et al. Surface Technology, 2019, 48(10), 214(in Chinese). 杜宝帅, 胥国祥, 张忠文, 等. 表面技术, 2019, 48(10), 214. 17 Shi Y, Du X D, Zhuang P C, et al. Surface Technology, 2019, 48(12), 23(in Chinese). 时运, 杜晓东, 庄鹏程, 等. 表面技术, 2019, 48(12), 23. 18 Feng Z Q, Tang M Q, Liu Y Q, et al. Surface Engineering, 2018, 34(4), 309. 19 Shi B M, Huang S M, Zhu P, et al. Materials Letters, 2020, 276, 128093. 20 Jing R. Preparation, structure and properties of high strength TiZr-based alloy. Ph. D. Thesis, Yanshan University, China, 2013(in Chinese). 景然. 高强度TiZrAlV合金的制备及组织性能研究. 博士学位论文, 燕山大学, 2013. 21 Lv Y Y, Yue Y, Du Z H, et al. Materials Reports, 2022, 36(17), 167(in Chinese). 吕源远, 岳赟, 杜志浩, 等. 材料导报, 2022, 36(17), 167. 22 Du Z H, Yue Y, Lv Y Y, et al. China Surface Engineering, 2023, 36(3), 132(in Chinese). 杜志浩, 岳赟, 吕源远, 等. 中国表面工程, 2023, 36(3), 132. 23 Hu C, Xin H, Watson L M, et al. Acta Materialia, 1997, 45(10), 4311. 24 Ma G Y, Liu X, Song C C, et al. Additive Manufacturing, 2022, 59(PA), 103087. 25 Cui H W, Cui X F, Wang H D, et al. Chinese Journal of Rare Metals, 2014, 38(6), 999(in Chinese). 崔华威, 崔秀芳, 王海斗, 等. 稀有金属, 2014, 38(6), 999. 26 Feng Z H, Liu Z H, Meng D Z, et al. Journal of Materials Research and Technology, 2023, 24, 928. 27 Yilbas B S, Hashmi M S J. Journal of Materials Processing Technology, 2000, 103(2), 304. 28 Kamat M A, Copley M S, Todd A J. Acta Materialia, 2016, 107, 72. 29 Fu Y, Zhang X C, Sui J F, et al. Optics and Laser Technology, 2015, 67, 78. 30 Zhang X C, Liu Z D, Xu J S, et al. Surface and Coatings Technology, 2013, 228, S107. 31 Bi X Q, Hu X L, Wang J. Journal of Aeronautical Materials, 2009, 29(3), 45(in Chinese). 毕晓勤, 胡小丽, 王洁. 航空材料学报, 2009, 29(3), 45. 32 Xia D, Xu B S, Lv Y H, et al. Heat Treatment of Metals, 2008, 33(9), 9(in Chinese). 夏丹, 徐滨士, 吕耀辉, 等. 金属热处理, 2008, 33(9), 9. 33 Yao X C. Study on laser gas nitriding process and properties of TC4 titanium alloy surface. Master's Thesis, Lanzhou University of Technology, China, 2019(in Chinese). 姚小春. TC4钛合金表面激光气体氮化工艺及性能研究. 硕士学位论文, 兰州理工大学, 2019. 34 Kamat M A, Segall E A, Copley M S, et al. Surface & Coatings Technology, 2017, 325, 229. 35 Yang J Q, Le K, Chen H, et al. International Journal of Precision Engineering and Manufacturing, 2023, 24(4), 607. 36 Magaziner R S, Jain V K, Mall S. Wear, 2008, 267(1), 368. 37 Li T, Liu Y M, Wang C, et al. Chinese Journal of Vacuum Science and Technology, 2018, 38(9), 755(in Chinese). 李彤, 刘艳明, 王晨, 等. 真空科学与技术学报, 2018, 38(9), 755.