Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 22010109-6    
  金属与金属基复合材料 |
离子氮化中氮在典型钢中的扩散行为研究
王鼎1, 周艳文1, 张开策1, 粟志伟1, 杜峰1, 武俊生1, 郭诚2
1 辽宁科技大学材料与冶金学院,辽宁 鞍山 114031
2 鞍钢建设集团有限公司,辽宁 鞍山 114000
Study on Diffusion Behavior of Nitrogen in Typical Steel by Ionic Nitriding
WANG Ding1, ZHOU Yanwen1, ZHANG Kaice1, SU Zhiwei1, DU Feng1, WU Junsheng1, GUO Cheng2
1 School of Materials Science and Metallurgy, University of Science and Technology Liaoning, Anshan 114031, Liaoning, China
2 Angang Construction Group Co., Ltd., Anshan 114000, Liaoning, China
下载:  全 文 ( PDF ) ( 8081KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过热丝增强低温等离子体渗氮技术对三种晶体结构及主要合金成分具有显著差异的典型钢进行了氮化处理,三种典型钢分别为M50模具钢、W6高速钢、316L不锈钢,检测了氮化后三种典型钢的渗氮层厚度、硬度、耐磨性,对渗氮层显微组织和物相进行了观测与分析,并计算了N原子在典型钢中的扩散激活能。结果表明:在渗氮温度为450 ℃、氮/氢流量比为1∶3的条件下,分别渗氮1 h、2 h和4 h后,三种钢的硬度、耐磨性得到提高,具有回火索氏体组织的M50模具钢与W6高速钢的渗氮层相结构为扩展铁素体(αN)及铁氮化合物(Fe3N)相,具有奥氏体组织的316L不锈钢的渗氮层相结构为单相扩展奥氏体(γN),且三种钢渗氮层厚度有较大差别,经过4 h离子氮化, W6高速钢的渗氮层最厚,达42.2 μm,M50模具钢渗氮层厚度为27.2 μm,316L不锈钢的最薄,为7.3 μm。造成这种差异的主要原因是体心立方(BCC)结构的钢较面心立方(FCC)结构的钢含有更大尺寸的八面体间隙,且钢中碳与合金元素形成的碳化物会促进铁氮合金的ε相形核,而在晶格格点的Cr与N的较大亲合力阻碍了N的进一步扩散。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王鼎
周艳文
张开策
粟志伟
杜峰
武俊生
郭诚
关键词:  离子氮化  晶体结构  耐磨性  渗氮层  八面体间隙    
Abstract: Three typical steels, including M50 die steel, W6 high speed steel and 316L stainless steel, which have significant differences in crystal structure and main alloy compositions, are nitrided by the hot wire enhanced low temperature plasma nitriding technology. After nitriding treatment, the thickness, hardness and wear resistance of nitriding layer of such three typical steels were measured, and the corresponding microstructure and phase constitutions are also observed and analyzed, and thereby the diffusion activation energy of N atoms are calculated. The results show that under the conditions of nitriding temperature of 450 ℃ and nitrogen/hydrogen flow ratio of 1∶3, the hardness and wear resis-tance of these three steels are improved after nitriding treatment for 1 h, 2 h and 4 h, respectively. The formation of ferrite (αN) and iron nitride compound(Fe3N)can be detected in the nitriding layers of M50 die steel with tempered sorbite structure and W6 high speed steel. By contrast, the microstructure of nitriding layer in the 316L stainless steel with austenite structure is identified to be single-phase N-doped austenite (γN), but the affected thickness of three steels are quite different. After 4 h ion nitriding, the thickness of nitriding layer of W6 high speed steel presents a maximum value of 42.2 μm, while the thickness of nitriding layer of M50 die steel reaches 27.2 μm, and the thickness of nitriding layer of 316L stainless steel shows a minimum value of 7.3 μm. The main reason for such difference is the fact that in steel the octahedral gap of body centered cubic (BCC) structure is larger than that of face centered cubic (FCC), and the carbides formed by carbon and alloying elements can promote the nucleation of the ε phase, while the stronger affinity between Cr element and N element at the lattice point further impedes the diffusion of N atoms.
Key words:  ionic nitriding    crystal structure    wear resistance    nitriding layer    octahedral gap
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TG430.15  
基金资助: 国家自然科学基金(51972155)
通讯作者:  zhouyanwen1966@163.com   
作者简介:  王鼎,2020年6月于辽宁科技大学获得工学学士学位。现为辽宁科技大学材料与冶金学院材料科学与工程专业硕士研究生,在周艳文教授的指导下进行研究,目前主要研究领域为离子氮化及磁控溅射镀膜。
周艳文,辽宁科技大学材料与冶金学院教授、硕士研究生导师。1988年于东北大学金属物理学硕士毕业,2005年于英国University of Salford 博士毕业后到辽宁科技大学工作至今。目前主要进行表面工程,如硬质薄膜、透明导电薄膜、离子氮化等方面的研究工作,发表SCI、EI检索论文50余篇,他引383次,发明专利10余项。先后主持国家自然科学基金项目5项(2项在研,3项结题)和教育部留学归国博士基金1项,参与了辽宁省优秀人才项目、辽宁省科技厅重点实验室项目等多项科研工作。
引用本文:    
王鼎, 周艳文, 张开策, 粟志伟, 杜峰, 武俊生, 郭诚. 离子氮化中氮在典型钢中的扩散行为研究[J]. 材料导报, 2022, 36(Z1): 22010109-6.
WANG Ding, ZHOU Yanwen, ZHANG Kaice, SU Zhiwei, DU Feng, WU Junsheng, GUO Cheng. Study on Diffusion Behavior of Nitrogen in Typical Steel by Ionic Nitriding. Materials Reports, 2022, 36(Z1): 22010109-6.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/22010109
1 徐滨士,张振学,马世宁,等. 中国表面工程,2000(1), 2.
2 徐滨士,马世宁,刘世参,等.同济大学学报,2001(9), 1085.
3 朱祖武.江西化工,2006(1), 38.
4 Priest J M, Baldwin M J, Fewell M P.Surface & Coatings Technology, 2001, 145(1-3), 152.
5 You Y, Yan J H, Yan M F.Applied Surface Science, 2019, 484, 710.
6 Akbari A, Mohammadzadeh R, Templier C, et al.Surface & Coatings Technology, 2010, 204(24), 4114.
7 邢海生,林峰,潘邻.热处理技术与装备,2011, 32(2), 1.
8 赵进刚,张宝伟,王明林.材料开发与应用,2005(4), 38.
9 Gavrilov N V, Mamaev A S, Chukin A V.Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2017, 11(6), 1167.
10 Miyamoto J, Abraha P.Surface & Coatings Technology, 2019, 375, 15.
11 Yan M F, Chen B F, Li B.Applied Surface Science, 2018, 455, 1.
12 尤绍军.金属热处理,2012, 37(1), 119.
13 Chan C W, Lee S, Smith G C, et al. Surface & Coatings Technology, 2017, 309, 628.
14 单嗣宏. M50钢离子源辅助渗氮层的组织与性能.硕士学位论文,哈尔滨工业大学,2018.
15 Yao J W, Yan F Y, Chen B F, et al.Surface & Coatings Technology, 2021, 409, 126910.
16 隋福楼,鞠育平,孟繁晶,等.物理测试,2001(4), 8.
17 胡赓祥,蔡珣,戎咏华. 材料科学基础, 上海交通大学出版社,2010, pp. 41.
18 杨正举.物理学报,1966(3), 281.
19 张志鹏. 氮表面改性奥氏体不锈钢的扩散动力学研究. 博士学位论文,大连理工大学,2014.
20 Basso R L O, Primentel V L, Weber S, et al.Journal of Applied Physics, 2009, 105, 124914.
21 Huang H J, Wei X W, He H Y, et al.Surface & Coatings Technology, 2020, 396, 125960.
22 徐冰仲,张颖智,范方利,等. 铁道学报,1983(2), 76.
23 高惠临,虞毅. 焊管,2004(5), 16.
24 王亮,许晓磊,于志伟,等.表面技术,1999(6), 17.
[1] 晏彩先, 许明明, 陈祝安, 王姿奥, 刘伟平, 常桥稳. 新型铱配合物[Ir(pmppy)2(Br2bpy)]PF6的合成、晶体结构及光物理性能测试[J]. 材料导报, 2022, 36(Z1): 21090264-5.
[2] 李佩悦, 马立云, 谢恩俊, 任子杰, 周新军, 高惠民, 吴建新. 六方氮化硼高导热纳米材料:晶体结构、导热机理及表面修饰改性[J]. 材料导报, 2022, 36(6): 20090231-12.
[3] 周维, 樊坤阳, 黄淙, 刘子京, 万维财, 贡太敏. 烧结温度对团聚高温快速烧结WC-10Co-4Cr粉末及其HVOF涂层性能的影响[J]. 材料导报, 2022, 36(6): 20120041-6.
[4] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[5] 韩美旭, 蔡伦, 王小泽, 藏洁, 孙梦宇, 杨涵凝, 秦连杰. 白光LED用氮化物红色荧光粉的研究进展[J]. 材料导报, 2021, 35(Z1): 51-55.
[6] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[7] 于坤, 祁文军, 李志勤. TA15表面激光熔覆镍基和钴基涂层组织和性能对比研究[J]. 材料导报, 2021, 35(6): 6135-6139.
[8] 杜宇航, 丁德渝, 郭宁, 郭胜锋. 高熵合金功能特性研究进展[J]. 材料导报, 2021, 35(17): 17051-17063.
[9] 秦建, 龙伟民, 路全彬, 李胜男, 黄俊兰. 金刚石/NiCrBSi钎涂接头组织与耐磨性能分析[J]. 材料导报, 2020, 34(Z2): 457-461.
[10] 吴双全, 任鑫, 初鑫, 江仁康, 窦春岳, 高志玉. 基于双向脉冲电沉积下的Ni-纳米TiC复合镀层结构及耐磨性能[J]. 材料导报, 2020, 34(24): 24080-24085.
[11] 任超, 罗军明, 陈宇海, 黄俊, 徐吉林. 喷丸对TC4合金微弧氧化涂层磨损和腐蚀行为的影响[J]. 材料导报, 2020, 34(18): 18081-18085.
[12] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. TC4合金激光熔覆材料的研究现状[J]. 材料导报, 2020, 34(15): 15132-15137.
[13] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报, 2020, 34(12): 12094-12100.
[14] 宋涛, 杨杰, 赵松海, 尚海涛, 白超超. 石膏基自流平砂浆耐磨性能研究[J]. 材料导报, 2019, 33(Z2): 239-241.
[15] 肖忆楠, 乔岩欣, 李月明, 盛立远, 赖琛, 奚廷斐. 医用钛及钛合金表面改性技术的研究进展[J]. 材料导报, 2019, 33(Z2): 336-342.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed