Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21110245-6    
  无机非金属及其复合材料 |
介孔二氧化硅纳米颗粒作为药物载体的研究现状
杨惠舒1, 李乐1, 刘馨谣2, 汤凯璇3, 乔利4
1 山东中医药大学药学院,济南 250355
2 山东中医药大学中医学院,济南 250355
3 山东中医药大学第一临床医学院,济南 250355
4 山东中医药大学实验中心,济南 250355
Research Status of Mesoporous Silica Nanoparticles as Drug Carriers
YANG Huishu1, LI Le1, LIU Xinyao2, TANG Kaixuan3, QIAO Li4
1 School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
2 School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
3 School of Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
4 Shandong University of Traditional Chinese Medicine Laboratory, Jinan 250355, China
下载:  全 文 ( PDF ) ( 2289KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 介孔二氧化硅纳米材料作为一种新型无机材料,具有表面积大、孔容积大以及表面可修饰化等优点,使其在生物医药领域被广泛应用。但单一的介孔二氧化硅存在生物降解低、性能单一等问题。为弥补这些功能缺陷,基于介孔二氧化硅纳米的一系列复合材料应运而生。介孔二氧化硅在与无机、有机材料杂化复合后,表现出可控、稳定等特征,大大改善其性能。本文简述了不同形态的介孔二氧化硅及其特性,总结了介孔二氧化硅与无机、有机材料杂化形成的复合材料的特性、研究成果及其在生物医药领域的应用情况。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨惠舒
李乐
刘馨谣
汤凯璇
乔利
关键词:  无机材料  介孔纳米颗粒  硅基复合材料  氧化硅  药物载体    
Abstract: As a new inorganic material, mesoporous silica nanomaterials have many advantages such as high surface area, large pore volume and surface modification, which make them widely used in the field of biomedicine. However, the single mesoporous silica has some problems such as low biodegradation and single performance. To remedy these functional defects, a series of composite materials based on mesoporous silica nanoparticles emerged. Mesoporous silica shows controllable, stable characteristics when mixed with inorganic and organic materials, which greatly improves its properties. In this paper, different forms of mesoporous silica and their properties are reviewed, and the properties, research achievements and applications of mesoporous silica composites with inorganic and organic materials are summarized.
Key words:  inorganic materials    mesoporous nanoparticles    silicon matrix composites    silicon oxide    drug carrier
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TQ460.4  
基金资助: 山东省自然科学基金(ZR2019PH048);山东省大学生创新创业训练计划项目(S202110441021)
通讯作者:  qiaoli0217@163.com   
作者简介:  杨惠舒,现为山东中医药大学药学本科在读学生,在乔利实验师的指导下进行研究。目前主要研究领域为纳米递药系统的研究。
乔利,山东中医药大学实验中心实验师。2017年6月在同济大学化学科学与工程学院取得化学专业硕士学位。目前主要从事新型纳米给药系统研究工作。主持和参与国家级和省部级科研项目多项,在Nanoscale、Journal of Materials Chemistry B、 Colloids and Surfaces B, Biointerfaces和ACS Biomaterial Science Engineering等国内外刊物发表论文10 余篇。
引用本文:    
杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
YANG Huishu, LI Le, LIU Xinyao, TANG Kaixuan, QIAO Li. Research Status of Mesoporous Silica Nanoparticles as Drug Carriers. Materials Reports, 2022, 36(Z1): 21110245-6.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21110245
1 Jiang H, Guo Y, Wei C, et al. Advanced Materials, 2021, 33(20), 1.
2 Lin F C, Xie Y, Deng T, et al. Journal of the American Chemical Society, 2021, 143(16), 6025.
3 贺旷驰,王蒙,赵斌, 等. 材料导报:综述篇, 2014, 28(7), 33.
4 韩静香,佘利娟,翟立新, 等. 材料导报, 2010, 24(S1), 6.
5 Jafari S, Derakhshankhah H, Alaei L, et al. Biomedicine and Pharmacotherapy, 2019, 109, 1100.
6 Wang J, Lu Z, Shen J, et al. Journal of Biomedical Nanotechnology, 2020, 16(5), 652.
7 Wu Y X, Zhang D, Hu X, et al. Angewandte Chemie International Edition, 2021, 60(22), 12569.
8 Miricioiu M G, Niculescu V C. Nanomaterials, 2020, 10(3), 474.
9 Hoang Thi T T, CaoV D, Nguyen T N Q, et al. Materials Science and Engineering C, 2019, 99, 631.
10 Luo S, Hao J, Gao Y, et al. Materials Science and Engineering C, 2019, 100, 789.
11 Juère E, Florek J, Bouchoucha M, et al. Molecular Pharmaceutics, 2017, 14(12), 4431.
12 Lyu Y, Li J, Chen H, et al. International Journal of Nanomedicine, 2017, 12, 4361.
13 Zhang K, Zhang Y H, Li Y, et al. Journal of Biomaterials Science, Polymer Edition, 2021, 32(6), 695.
14 Pérez-Garnes M, Gutiérrez-Salmerón M, Morales V, et al. Materials Science and Engineering C, 2020, 16(5), 652.
15 张硕. 材料导报, 2020, 34(S2), 1091.
16 Geng H, Chen W, Xu Z P, et al. European Journal of Medicinal Chemistry, 2017, 23(45), 10878.
17 冯雪风, 金卫根, 杨婥. 无机盐工业, 2009, 41(9), 18.
18 Ao L, Hu X, Xu M, et al. Dalton Transactions, 2020, 49(15), 4669.
19 Dai Y, Yang D, Yu D, et al. Nanoscale, 2020, 12(8), 5075.
20 王亚斌,刘忠,史时辉,等. 无机材料学报, 2018, 230(12), 1274.
21 Hou X, Fan W, Wang G, et al. Journal of Nanobiotechnology, 2020, 18(1), 1.
22 Tang J, Meka A K, Theivendran S, et al. Angewandte Chemie-International Edition, 2020, 59(49), 22054.
23 Cheng Y, Jiao X, Fan W, et al. Biomaterialsl, 2020, 256, 120191.
24 Shakeran Z, Keyhanfar M, Varshosaz J, et al. Materials Science and Engineering, C, 2021, 118, 111526.
25 Croissant J G, Fatieiev Y, Khashab N M, et al. Advanced Materials, 2017, 29(9), 1604634.
26 Tzankova V, Aluani D, Yordanov Y, et al. Drug and Chemical Toxicology, 2021, 44(3), 238.
27 Zhang L, Wang L, Wang L, et al. Journal of Materials Chemistry B, 2017, 5(39), 8013.
28 Wu J, Williams G R, Niu S, et al. Advanced Science, 2019, 6(4), 1802001.
29 Cheng S B, Xie M. University Chemistry, 2016, 31(11), 1.
30 Tufani A, Qureshi A, Niazi J H. Materials Science and Engineering C, 2021, 118, 111545.
31 Vangijzegem T, Stanicki D, Laurent S, et al. Expert Opinion on Drug Delivery, 2019, 16(1), 69.
32 Sun B, Zhen X, Jiang X. Biomaterials Science, 2021, 9(10), 3603.
33 Castillo R R, Vallet-Regí M. International Journal of Molecular Medicine, 2019, 20(4), 929.
34 Albinali K E, Zagho M M, Deng Y, et al. International Journal of Nanomedicine, 2019, 14, 1707.
35 Li E, Yang Y, Hao G, et al. Nanotheranostics, 2018, 2(3), 233.
36 Kong Y, Li X, Liu X, et al. Journal of Nanoscience and Nanotechnology, 2021, 21(9), 4553.
37 Elahi N, Kamali M, Baghersad M H, et al. Talanta, 2018, 184, 537.
38 Yang Z, Li Z, Lu X, et al. Nano-Micro Letters, 2017, 9(1), 1.
39 Lin Y, Ren J, Qu X, et al. Advanced Materials, 2014, 26(25), 4200.
40 Xin H, Zhang M, Wang M, et al. Langmuir, 2018, 34(12), 3642.
41 Kalantari M, Ghosh T, Liu Y, et al. ACS Applied Materials & Interfaces, 2019, 11(14), 13264.
42 Delpiano G R, Casula M F, Piludu M, et al. ACS Omega, 2019, 4(6), 11044.
43 Chen G, Xie Y, Peltier R, et al. ACS Applied Materials & Interfaces, 2016, 8(18), 11204.
44 Raji M, Hamid E, Denis R, et al. Polymers and Polymer Composites, 2017, 39(8), 2932.
45 Pandit S, Gaska K, Kádár R, et al. Chemphyschem, 2021, 22(3), 250.
46 胡洪亮, 张国. 高分子材料科学与工程, 2016, 32(2), 95.
47 Grajek H, Jonik J, Witkiewicz Z, et al. Critical Reviews in Analytical Chemistry, 2020, 50(5), 445.
48 Loutfy S A, Salaheldin T A, Ramadan M A, et al. Asian Pacific Journal of Cancer Prevention, APJCP, 2017, 18(4), 955.
49 Dong K, Zhao Z Z, Kang J, et al. International Journal of Nanomedicine, 2020, 15(17), 10285.
50 Tran A V, Shim K, Vo Thi T T, et al. Acta Biomaterialia, 2018, 74, 397.
51 Jiang X, Gray P, Patel M, et al. Journal of Materials Chemistry, 2020, 8(6), 1191.
52 Razumov I A, Troitsky S Y, Zavjalov E L, et al. Nanotechnologies in Russia, 2021, 15(11), 819.
53 Patra T, Mohanty A, Singh L, et al. Chemosphere, 2021, 288, 132472.
54 Bai B, Qiao Q, Li Y, et al. Chinese Journal of Catalysis, 2018, 39(4), 630.
55 Liu L, Liu Z, Chen Y, et al. Science of the Total Environment, 2021, 772, 144953.
56 Chen Y, Chen H, Zhang S, et al. Biomaterials, 2012, 33(7), 2388.
57 Du D, Fu H J, Ren W W, et al. Biomedicine & Pharmacotherapy, 2020, 121, 109614.
58 王思恒, 杨欣欣, 刘鹤, 等. 化工进展, 2021, 40(5), 2646.
59 Ahmed S, Alhareth K, Mignet N, et al. International Journal of Pharmaceutics, 2020, 584, 119435.
60 Yao J, Li T, Shi X, et al. Acta Biomaterialia, 2021, 130, 409.
61 Kinoshita N, Sasaki Y, Marukawa E, et al. Polymer Edition, 2020, 31(10), 1254.
62 Wechsler M E, Dang H K H J, Dahlhauser S D, et al. Chemical Communications, 2020, 56(45), 6141.
63 Qi M, Pan H, Shen H, et al. Angewandte Chemie-International Edition, 2020, 59(29), 11748.
64 Zengin A, Castro J P O, Habibovic P, et al. Nanoscale, 2020, 13(2), 1144.
65 Qiao L, Wang X, Gao Y, et al. Nanoscale, 2016, 8(39), 17241.
66 Thakor P, Bhavana V, Sharma R, et al. Drug Discovery Today, 2020, 25(9), 1718.
67 Saboo S, Kestur U S, Flaherty D P, et al. Molecular Pharmaceutics, 2020, 17(4), 1261.
68 Qin Y, Shan X, Han Y, et al. Journal of Nanoscience and Nanotechnology, 2020, 20(10), 5997.
[1] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[2] 李吉泰, 展悦, 冯明珠, 崔永岩. 超亲水-空气疏油水下超疏油不锈钢网的制备及性能[J]. 材料导报, 2022, 36(Z1): 22010079-5.
[3] 吕博, 陈连喜. 磷酸功能化空心二氧化硅的制备及其对Cd2+的吸附[J]. 材料导报, 2022, 36(9): 21030132-7.
[4] 陈煜太, 黄威, 姜红, 李珊, 王元凤. 磺酸基与羧基修饰纳米二氧化硅:两种阴离子型纳米指纹显现材料的制备与应用[J]. 材料导报, 2022, 36(5): 21020127-7.
[5] 李洁, 张佳, 付明琴, 许立强, 胡其志, 李小鹏, 余萃. 介孔SiO2负载有机基二元定型复合相变储能材料的性能研究[J]. 材料导报, 2021, 35(z2): 483-487.
[6] 义水灵, 熊向源. 转铁蛋白在纳米靶向药物递送体系的应用[J]. 材料导报, 2021, 35(z2): 501-507.
[7] 雷颖, 葛冲冲, 冯瑾, 尚娇娇. pH响应型三维纳米纤维的构建及其性能研究[J]. 材料导报, 2021, 35(z2): 508-512.
[8] 吕博, 陈连喜. 磷酸基功能化二氧化硅材料的制备、性能和应用[J]. 材料导报, 2021, 35(Z1): 143-150.
[9] 苏博文, 史公初, 廖亚龙, 张宇, 王伟, 郗家俊. 工业固体废弃物制备二氧化硅功能材料的研究进展[J]. 材料导报, 2021, 35(3): 3026-3032.
[10] 冯江波, 王景平, 苑慧莹, 任秦博, 曹金安, 王学川. 不同粒径PANI/SiO2对环氧涂层防腐性能的影响[J]. 材料导报, 2021, 35(24): 24182-24188.
[11] 应宗耀, 郑煜铭, 邵再东, 程璇. 胺基改性二氧化硅气凝胶的制备及对刚果红的吸附性能[J]. 材料导报, 2021, 35(20): 20005-20010.
[12] 康兴隆, 鲁哲宏, 柳妍, 冯伟丽, 刘保英, 房晓敏, 丁涛. 改性纳米二氧化硅协效二乙基次磷酸铝阻燃尼龙6[J]. 材料导报, 2021, 35(18): 18047-18051.
[13] 张䶮, 朱永乐, 黄丽娟, 王永安, 赵瑾, 聂志勇. 介孔二氧化硅门控开关在分析检测中的研究进展[J]. 材料导报, 2021, 35(15): 15081-15087.
[14] 王博闻, 方针, 付志瑶, 胡建平, 彭永晶. 不同SiO2含量对氧化锌电阻片通流性能的影响[J]. 材料导报, 2020, 34(Z2): 52-56.
[15] 张硕. 利用纳米碳酸钙为模板制备二氧化硅空心微球[J]. 材料导报, 2020, 34(Z2): 91-94.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed