Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 85-91    https://doi.org/10.11896/j.issn.1005-023X.2017.018.018
  材料研究 |
颗粒和微观结构对Cu/WCp复合材料疲劳裂纹萌生和扩展行为的影响*
张玉波1, 郭荣鑫1,2, 夏海廷1,2, 颜峰1,2, 王时越1, 李一博1
1 昆明理工大学建筑工程学院,昆明 650500;
2 昆明理工大学云南省先进材料力学行为与微结构设计高校重点实验室,昆明 650500
Effect of Particle and Microstructure on Fatigue Crack Initiation and Growth Behavior of Cu/WCp Composites
ZHANG Yubo1, GUO Rongxin1,2, XIA Haiting1,2, YAN Feng1,2, WANG Shiyue1, LI Yibo1
1 Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500;
2 Yunnan Province University Key Laboratory of Advanced Material Mechanics Behavior and the Micro Structure Design, Kunming University of Science and Technology, Kunming 650500
下载:  全 文 ( PDF ) ( 2415KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过原位扫描电子显微镜(SEM)研究了粉末冶金制备的Cu/WCp复合材料的疲劳裂纹萌生和扩展行为,分析了颗粒和微观结构对Cu/WCp复合材料疲劳裂纹萌生和早期扩展行为的影响。结果表明:疲劳微裂纹萌生于WCp颗粒和基体Cu的界面;微裂纹之间相互连接并形成主裂纹,当主裂纹和颗粒相遇时裂纹沿着颗粒界面扩展。在低应力强度因子幅ΔK区域疲劳小裂纹具有明显的“异常现象”,并占据了全寿命的71%左右。疲劳小裂纹的早期扩展阶段易受局部微观结构和颗粒WCp的影响,扩展速率波动性较大,随机性较强;当小裂纹长度超过150 μm时,裂纹扩展加快直至试样快速断裂。裂纹偏折、分叉和塑性尾迹降低了疲劳裂纹扩展速率,而颗粒界面脱粘则提高了复合材料的疲劳裂纹扩展速率。通过数值模拟也可以发现颗粒脱粘增大了材料的疲劳扩展驱动力,从而提高了疲劳裂纹扩展速率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张玉波
郭荣鑫
夏海廷
颜峰
王时越
李一博
关键词:  Cu/WCp  颗粒增强复合材料  原位疲劳SEM  微观结构  裂纹扩展速率  颗粒界面脱粘    
Abstract: By in-situ scanning electron microscopy, the fatigue crack initiation and propagation behaviors of Cu/WCp compo-sites produced by powder metallurgy was studied, and effects of particle and microstructure on fatigue crack initiation and early pro-pagation mechanism of composites was analyzed. The results show that fatigue micro cracks initiated at the interface between WCp particles and matrix, potential fatigue cracks tend to nucleate and grow along particles. At low stress intensity factor range, the fatigue crack has obvious “abnormal phenomenon” and occupied 71% of the whole life. The early growth of fatigue crack was strongly affected by the local microstructure and WCp particles of composite, and the scattering of small fatigue cracks growth rate was large. As the length of a small crack was more than 150 μm, the crack growth rate increased rapidly until the specimen was quickly broken. Crack deflection, crack branching and the plastic wake decelerated the fatigue crack growth rate, however particle debonding accele-rated the composite fatigue crack growth rate. From the results of numerical simulation, the particle interface debonding of the composite was found to significantly enlarge the fatigue crack growth driving force, which accelerated the fatigue crack growth rate.
Key words:  Cu/WCp    particle-reinforced composite    in-situ fatigue SEM    microstructure    crack growth rate    particle interface debonding
出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TG113.25  
基金资助: 国家自然科学基金(11362007;11462009)
通讯作者:  郭荣鑫:通讯作者,男,1964年生,博士,教授,博士研究生导师,研究方向为损伤与断裂力学、复合材料力学 E-mail:guorx@kmust.edu.cn   
作者简介:  张玉波:男,1988年生,博士研究生,研究方向为颗粒增强复合材料的疲劳损伤 E-mail:zyb9293@163.com
引用本文:    
张玉波, 郭荣鑫, 夏海廷, 颜峰, 王时越, 李一博. 颗粒和微观结构对Cu/WCp复合材料疲劳裂纹萌生和扩展行为的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 85-91.
ZHANG Yubo, GUO Rongxin, XIA Haiting, YAN Feng, WANG Shiyue, LI Yibo. Effect of Particle and Microstructure on Fatigue Crack Initiation and Growth Behavior of Cu/WCp Composites. Materials Reports, 2017, 31(18): 85-91.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.018  或          https://www.mater-rep.com/CN/Y2017/V31/I18/85
1 Sun Chao,Shen Rujuan,Song Min. Simulation of mechanical beha-viors of SiC reinforced Al matrix composites by finite element me-thod[J]. Chinese J Nonferr Met,2012,22(2):476(in Chinese).
孙超, 沈茹娟, 宋旼. 有限元模拟SiC增强Al基复合材料的力学行为[J]. 中国有色金属学报, 2012,22(2):476.
2 Chawla N, Ganesh V V.Fatigue crack growth of SiC particle reinforced metal matrix composites [J]. Int J Fatigue, 2010,32(5):856.
3 Zou Lihua, Fan Jianzhong, Zuo Tao, et al. High-cycle fatigue behavior of 15%SiCp/2009Al composite prepared by powder metallurgy process[J]. Chinese J Nonferr Met, 2010,20(10):1955(in Chinese).
邹利华, 樊建中, 左涛, 等. 粉末冶金15%SiCp/2009Al复合材料的高周疲劳性能[J]. 中国有色金属学报, 2010,20(10):1955.
4 Miller K J. The behaviour of short fatigue cracks and their initiation part Ⅱ—A general summery [J]. Fatigue Fract Eng Mater Struct, 1987,10(2):93.
5 Jordon J B, Bernard J D, Newman Jr J C. Quantifying microstructural small fatigue crack growth in an aluminum alloy using a silicon-rubber replica method [J]. Int J Fatigue, 2012,36(1):206.
6 Kaynak C, Ankara A, Baker T J. A comparison of short and long fatigue crack growth in steel [J]. Int J Fatigue, 1996,18(1):17.
7 Cappelli M D, Carlson R L, Kardomateas G A. The transition between small and long fatigue crack behavior and its relation to microstructure [J]. Int J Fatigue, 2008,30(8):1473.
8 Gall K, Biallas G, Maier H J, et al. Environmentally influenced microstructural small fatigue crack growth in cast magnesium [J]. Mater Sci Eng A, 2005,396(1):143.
9 Mcdowell D L. An engineering model for propagation of small cracks in fatigue [J]. Eng Fract Mech, 1997,56(3):357.
10Zhang Li, Huang Xinyue, Wu Xueren, et al. In-situ experiment on early growth of small fatigue crack of nickel-based super alloy GHD4169 [J]. J Aerospace Power, 2014,29(4):901(in Chinese).
张丽, 黄新跃,吴学仁,等. 镍基高温合金GH4169小裂纹早期扩展的原位疲劳试验[J]. 航空动力学报, 2014,29(4):901.
11Sinha V, Mercer C, Soboyejo W O. An investigation of short and long fatigue crack growth behavior of Ti-6Al-4V [J]. Mater Sci Eng A, 2000,287(1):30.
12Schaf W, Marx M, Knorr A F. Influence of microstructural barriers on small fatigue crack growth in mild steel[J]. Int J Fatigue, 2013,57:86.
13Iqbal A A, Arai Y, Araki W. Effect of hybrid reinforcement on crack initiation and early propagation mechanisms in cast metal matrix composites during low cycle fatigue [J]. Mater Des, 2013,45(3):241.
14Chen Y Q, Pan S P, Zhou M Z, et al. Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy[J]. Mater Sci Eng A, 2013,580:150.
15中国航空工业总公司.HB7680-2000.中华人民共和国航空工业标准-金属材料高温疲劳裂纹扩展速率试验方法[S].北京:国防科学技术工业委员会,2000.
16Suresh S. 材料的疲劳 [M].王中光,等 (译).北京: 国防工业出版社, 1993.
17Li Hongying, Bin Jie, Lin Wu, et al. Effects of tempering treatment on fatigue crack propagation behavior of micro alloyed pipeline steels[J]. J Central South University: Nat Sci Ed, 2011,42(9):2635(in Chinese).
李红英,宾杰,林武,等. 回火对微合金管线钢疲劳裂纹扩展行为的影响[J]. 中南大学学报:自然科学版, 2011,42(9):2635.
18Wang F F, Xu J M, LI J G, et al. Crack initiation and propagation in A356 alloy reinforced with in situ TiB2 particles [J]. Mater Des, 2012,33:236.
19Suresh S. Fatigue crack deflection and fracture surface contact: Micromechanical models [J]. Metall Mater Trans A, 1985,16(1):249.
20Pavlou D G, Vlachakis N V, Pavlou M G, et al. Estimation of fatigue crack growth retardation due to crack branching[J]. Comput Mater Sci, 2004,29(4):446.
21Anderson T L. Fracture mechanics: Fundamentals and applications [M].New York: Taylor & Francis, 2005.
22Ayyara A, Chawla N. Microstructure-based modeling of crack growth in particle reinforced composites [J]. Compos Sci Technol, 2006,66(13):1980.
23Song Weidong, Wang Jing, Liu Haiyan. Finite element model of real structure for particle reinforced composites [J]. Trans Beijing Institute Technology, 2009,29(6):501(in Chinese).
宋卫东, 王静, 刘海燕. 颗粒增强复合材料真实结构有限元建模[J]. 北京理工大学学报, 2009,29(6):501.
[1] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[2] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[3] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[4] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[5] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[6] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[7] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[8] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[9] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[10] 刘开强, 于骏杰, 王海平, 张夏雨, 金诚, 张兴国. 地层渗流水对凝固过程固井水泥浆的侵扰机理[J]. 材料导报, 2024, 38(24): 23070062-6.
[11] 张建伟, 李智睿, 曹克磊, 陈磊, 赵江雨. 某水库粉质粘土渗透特性及微观机理研究[J]. 材料导报, 2024, 38(24): 23090129-8.
[12] 石磊, 房佳明, 张建伟, 张欢, 边汉亮, 徐向春. 考虑干密度影响的EICP矿化粉砂土渗透特性试验研究[J]. 材料导报, 2024, 38(23): 23090044-7.
[13] 黄鹏宇, 周永祥, 冷发光, 贺阳, 孔亚宁, 杨文, 高育欣. 同级配下高碳铬铁渣骨料对混凝土性能的影响研究[J]. 材料导报, 2024, 38(22): 23090192-7.
[14] 周辉, 莫继良, 张蒙祺, 王好平, 陈伟, 龚柯梦. 人工漂珠制备吸声材料的降噪性能研究[J]. 材料导报, 2024, 38(22): 23110073-7.
[15] 甘如饴, 浮洁, 綦松, 余淼. 基于微流控系统的磁流变胶微观结构演化与磁敏行为分析[J]. 材料导报, 2024, 38(21): 23060186-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed