Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 92-96    https://doi.org/10.11896/j.issn.1005-023X.2017.018.019
  材料研究 |
工业闭孔泡沫铝压缩力学性能及变形机理*
闫畅, 宋绪丁, 荆传贺, 封硕
长安大学道路施工技术与装备教育部重点实验室,西安 710064
Mechanical Properties and Deformation Mechanism of Industrial Aluminum Foams
YAN Chang, SONG Xuding, JING Chuanhe, FENG Shuo
Key Laboratory of Road Construction Technology & Equipment of Ministry of Education, Chang’an University, Xi’an 710064
下载:  全 文 ( PDF ) ( 1936KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 泡沫铝是一种新型的结构和功能材料,因特殊的能量吸收特性而在工程领域具有很好的应用前景。为了研究基体材料对泡沫铝力学性能和变形失效机理的影响,同时为工业泡沫铝材料提供更具参考价值的性能指标,对工业上最常见的两种不同基体(纯铝基体和7050铝合金基体)的泡沫铝材料进行了准静态压缩力学性能的试验,并对其变形机理进行了分析。试验结果表明,相同规格的7050基体泡沫铝的压缩力学性能高于纯铝基体泡沫铝,能量吸收能力也远大于纯铝基体泡沫铝。纯铝基体泡沫铝在压缩载荷下呈现逐层坍塌、连续性破坏的模式,试件在完全压实后呈碎渣;7050基体泡沫铝表现出逐层坍塌、间断式破坏的模式,试件在完全压实后呈完整的块状。7050基体泡沫铝的泡孔结构比纯铝基体泡沫铝均匀,力学性能更加稳定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫畅
宋绪丁
荆传贺
封硕
关键词:  闭孔泡沫铝  力学性能  变形机理  压缩实验    
Abstract: Aluminum foams are a new class of structural and functional materials. It has a bright prospect in engineering field. In order to study the effects of matrix materials on the mechanical properties and deformation mechanism of aluminum foam and endow industrial aluminum foam with a more useful and reliable performance index, two kinds of industrial foams, Al-matrix and 7050 Al-alloy-matrix foams, were studied. The results showed that the compressive mechanical properties of 7050 Al-alloy-matrix foam was much higher than that of Al-matrix foam, so was its energy absorption ability. The deformation mechanism of Al-matrix foam was that the cells collapsed layer by layer during deformation, continuously. The outside materials of Al-matrix foam peeled off during the compression remarkably and compressed to be crumbs finally. The deformation mechanism of 7050-matrix foam was that the cells collapsed layer by layer during the deformation, discontinuously. The specimens were still whole bulks after compression finally. The cell structure of 7050-matrix foam was more uniform than that of Al-matrix foam in the present study, therefore its mechanical stability was better than Al-matrix foam.
Key words:  closed-cell aluminum foam    mechanical property    deformation mechanism    compression test
出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TB34  
基金资助: 中央高校基金(310825175007;310825163407;310825161001);陕西省科技统筹创新工程重点实验室项目(2014SZS11-P04)
作者简介:  闫畅:女,1990年生,博士研究生,主要研究方向为泡沫铝材料的力学性能与加固 E-mail:1306352588@qq.com
引用本文:    
闫畅, 宋绪丁, 荆传贺, 封硕. 工业闭孔泡沫铝压缩力学性能及变形机理*[J]. 《材料导报》期刊社, 2017, 31(18): 92-96.
YAN Chang, SONG Xuding, JING Chuanhe, FENG Shuo. Mechanical Properties and Deformation Mechanism of Industrial Aluminum Foams. Materials Reports, 2017, 31(18): 92-96.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.019  或          https://www.mater-rep.com/CN/Y2017/V31/I18/92
1 Gibson L J, Ashby M F. Cellular solids: Structure and properties[M]. Second ed. Oxford: Cambridge University Press, 1997.
2 Banhart J. Manufacture, characterization and application of cellular metals and metal foams[J]. Prog Mater Sci, 2001,46:559.
3 Simone A E, Gibson L J. Aluminum foams produced by liquid-state processes[J]. Acta Mater, 1998,46:3109.
4 Li Yonggang, Wei Yinghui, Hou Lifeng, et al. Fabrication and compressive behaviour of an aluminium foam composite[J]. J Alloys Compd, 2015,649:76.
5 Wang Bin, He Deping, Shu Guangji. Compressive properties and energy absorption of foamed Al alloy[J]. Acta Metall Sinica,2000,36(10):1037(in Chinese).
王斌,何德坪,舒光冀.泡沫Al合金的压缩性能及其能量吸收[J], 金属学报,2000,36(10):1037.
6 Baltatescu O, Florea R M, Roman C, et al. Stabilized aluminum foams, unique material for industrial applications [J]. J Optoelectron Adv Mater, 2013,15:823.
7 Han Fusheng, Zhu Zhen’gang, Liu Changsong. Compressive deformation and energy absorbing characteristics of foamed aluminum[J]. Acta Phys Sinica,1998,47(3):520(in Chinese).
韩福生,朱震刚,刘长松,泡沫Al 压缩形变及能量吸收特征[J]. 物理学报,1998,47(3):520.8 Cheng Hefa, Huang Xiaomei, Xu Ling. Research on dynamic compressive properties and energy absorption of aluminum foam[J]. Ordnance Mater Sci Eng,2003,26(5):37(in Chinese).
程和法, 黄笑梅, 许玲.泡沫铝的动态压缩性能和吸能性研究[J]. 兵器材料科学与工程, 2003,26(5):37.
9 Kadkhodapour J, et al. Plastic deformation and compressive mechanical properties of hollow sphere aluminum foams produced by space holder technique [J]. Mater Des, 2015,83:352.
10Gaitanaros S, Kyriakides S.Dynamic crushing of aluminum foams: Part Ⅱ—Analysis[J]. Int J Solids Struct, 2014,51:1646.
11Matej Vesenjak, Mohd Ayub Sulong, Lovre Krstulovic-Opara, et al. Dynamic compression of aluminium foam derived from infiltration casting of salt dough [J]. Mechan Mater, 2016,93:96.
12Kader M A, Islam M A, Hazell P J, et al. Modelling and characte-rization of cell collapse in aluminium foamsduring dynamic loading[J]. Int J Impact Eng, 2016,96:78.
13Pang Baojun, Zheng Wei,Chen Yong. Dynamic impact behavior of aluminum foam with a taylor impact test and a theoretical analysis[J]. J Vib Shock, 2013,32(12):154(in Chinese).
庞宝君,郑伟,陈勇. 基于Taylor 实验及理论分析的泡沫铝动态冲击特性研究[J].振动与冲击, 2013,32(12):154.
14Pan Yi, et al. Experimental study on dynamic behavior of foamed aluminum[J]. Mater Sci Eng, 2002,20(3):341(in Chinese).
潘艺,等.泡沫铝动态力学性能的实验研究 [J]. 材料科学与工程, 2002,20(3):341.
15Xu Ling, Huang Xiaomei, Cheng Hefa. Investigation on the compressive properties of some Al foams with different matrixes[J]. J Hefei University of Technology (Nat Sci), 2003,26(5):1079(in Chinese).
许玲,黄笑梅,程和法,几种不同性质基体泡沫铝的压缩性能研究[J]. 合肥工业大学学报(自然科学版),2003,26(5):1079.
16Wang H, Zhoun X Y, Long B, et al. Compression behavior of Al2O3k/Al composite materials fabricated by counter-gravity infiltration casting [J]. Mater Sci Eng A, 2013,582(31):6.
17Gibson L J, Ashby M F. Cellular solids: Structure and properties [M]. Oxford:Pergramon Press, 1997:330.
18Kang Yingan, Zhang Junyan, Tan Jiacai. Effect of relative density on the compressive property and energy absorption capacity of aluminum foams [J]. J Funct Mater, 2006,37(2):247(in Chinerse).
康颖安,张俊彦,谭加才,相对密度对泡沫铝力学性能和能量吸收性能的影响[J]. 功能材料,2006,37(2):247.
19Cao Xiaoqing, Yang Guitong. Mechanical behavior and energy absorption capacity of aluminum foam under unianxial compression [J]. Nonferr Met, 2006,58(4):9(in Chinese).
曹晓卿, 杨桂通.泡沫铝的单向压缩行为及其吸能性[J]. 有色金属, 2006,58(4):9.
20Liu Jiaan, Qu Qingxiang, Liu Yan, et al. Compressive properties of Al-Si-SiC composite foams at elevated temperatures[J]. J Alloys Compd, 2016,676:239.
21Yuan Jianyu, Chen Xiang, Zhou Wenwu, et al. Study on quasi-static compressive properties of aluminum foam-epoxy resin composite structures[J]. Composites Part B, 2015,79:301.
22Maiti S K, et al. Deformation and energy absorption diagrams for celluar solids [J]. Acta Met,1984,32(11):1963.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[12] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[13] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[14] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[15] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed