Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 81-84    https://doi.org/10.11896/j.issn.1005-023X.2017.018.017
  材料研究 |
热轧对搅拌摩擦加工制备CNTs/Al复合材料微结构与性能的影响*
夏春, 汪云海, 黄春平, 邢丽, 夏星, 许冬
南昌航空大学轻合金加工科学与技术国防重点学科实验室, 南昌 330063
Influence of Hot Rolling on Microstructure and Properties of CNTs/Al Composites Fabricated by Friction Stir Processing
XIA Chun, WANG Yunhai, HUANG Chunping, XING Li, XIA Xing, XU Dong
National Defence Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063
下载:  全 文 ( PDF ) ( 1680KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在搅拌摩擦加工制备碳纳米管增强铝基复合材料(CNTs/Al)的基础上,研究了热轧对复合材料微结构与性能的影响。结果表明,热轧使基体晶粒沿轧制方向拉长,同时有利于CNTs的取向并在一些CNTs-Al界面形成Al4C3相;基于CNTs取向等微结构的变化以及界面反应引起界面结合力增强的因素,沿轧制方向复合材料的抗拉强度、导电性明显提高,热膨胀率降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏春
汪云海
黄春平
邢丽
夏星
许冬
关键词:  热轧  搅拌摩擦加工  CNTs/Al复合材料  微结构  性能    
Abstract: The effects of hot rolling on the microstructure and properties of CNTs/Al composites fabricated by friction stir processing (FSP) were investigated. The results indicated that hot rolling was beneficial to the orientation of CNTs, and Al4C3 phase was formed in the interface of CNTs/Al. The matrix grain was elongated along the rolling direction at the same time. The tensile strength and electrical conductivity of the composites were significantly improved, and the coefficient of thermal expansion was reduced along the rolling direction, attributed to the changes in the orientation of CNTs and the enhancement of interfacial binding force caused by the interfacial reaction.
Key words:  hot rolling    friction stir processing    CNTs/Al composites    microstructure    property
出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TG146.2+1  
基金资助: 国家自然科学基金(51465044;51364037);江西省自然科学基金(20142BAB216019);轻合金加工科学与技术国防重点学科实验室开放基金(gf201601003)
作者简介:  夏春:男,1974年生,博士,副教授,研究方向为复合材料制备 Tel:0791-83953312 E-mail:xiachun2002@163.com
引用本文:    
夏春, 汪云海, 黄春平, 邢丽, 夏星, 许冬. 热轧对搅拌摩擦加工制备CNTs/Al复合材料微结构与性能的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 81-84.
XIA Chun, WANG Yunhai, HUANG Chunping, XING Li, XIA Xing, XU Dong. Influence of Hot Rolling on Microstructure and Properties of CNTs/Al Composites Fabricated by Friction Stir Processing. Materials Reports, 2017, 31(18): 81-84.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.017  或          https://www.mater-rep.com/CN/Y2017/V31/I18/81
1 Ma Z Y. Friction stir processing technology: A review[J]. Metall Mater Trans A, 2008,39(3):642.
2 McNelley R T. Friction stir processing(FSP): Refining microstructures and improving properties [J]. Revista De Metalurgia, 2011,46(1):149.
3 Lim D K, Shibayanagi T, Gerlich A P. Synthesis of multi-walled CNT reinforced aluminum alloy composite via friction stir processing [J]. Mater Sci Eng A, 2009,507(1-2):194.
4 Zhao X, Ke L M, Xu W P, et al. Carbon nanotubes reinforced aluminum matrix composites by friction stir processing [J]. Acta Mater Compos Sin, 2011,28(2):185(in Chinese).
赵霞, 柯黎明, 徐卫平, 等. 搅拌摩擦加工法制备碳纳米管增强铝基复合材料 [J]. 复合材料学报, 2011,28(2):185.
5 Liu Z Y, Xiao B L, Wang W G, et al. Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing [J]. Carbon, 2012,50(5):1843.
6 Shi N, Nie J H, Zhang Y F, et al. Mechanical and physical properties of carbon nanotube reinforeed aluminum matrix composites [J]. J University of Science and Technology Beijing, 2013,35(1):104(in Chinese).
史娜, 聂俊辉, 张亚丰, 等. 碳纳米管增强铝基复合材料的力学和物理性能 [J]. 北京科技大学学报, 2013,35(1):104.
7 Esawi A M K, Borady M A E. Carbon nanotube reinforced alumi-nium strip [J]. Compos Sci Technol, 2008,68(2):486.
8 Choi H J, Min B H, Shin J H, et al. Strengthening in nanostructured 2024 aluminum alloy and its composites containing carbon nanotubes [J]. Composites Part A: Appl Sci Manufacturing, 2011,42(10):1483.
9 Liu Z Y, Xiao B L, Wang W G, et al. Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling [J]. Carbon, 2013,62(5):35.
10George R, Kashyap K T, Rahul R, et al. Strengthening in carbon nanotube/aluminium (CNT/Al) composites [J]. Scr Mater, 2005,53(10):1159.
11Li C D, Wang X J, Liu W Q, et al. Microstructure and strengthening mechanism of carbon nanotubes rein-forced magnesium matrix composite [J]. Mater Sci Eng A, 2014,597(8):264.
12Kuzumaki T, Hayashi T, Miyazawa K, et al. Processing of ductile carbon nanotube/C60 composite [J]. Mater Trans Jim, 1998,39(5):574.
13Bakshi S R, Agarwal A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites [J]. Carbon, 2011,49(2):533.
14Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes [J]. Science, 1996,273(5274):483.
15Yang D J, Wang S G, Zhang Q, et al. Thermal and electrical transport in multi-walled carbon nanotubes [J]. Phys Lett A, 2004,329(3):207.
16Tang Y, Cong H, Zhong R, et al. Thermal expansion of a compo-site of single-walled carbon nanotubes and nano-crystalline aluminum [J]. Carbon, 2004,42(15):3260.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[3] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[4] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[5] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[6] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[7] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[8] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[9] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[10] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[11] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[12] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[13] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[14] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[15] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed