Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 77-80    https://doi.org/10.11896/j.issn.1005-023X.2017.018.016
  材料研究 |
高能球磨对Mg-Zn-Zr合金微观组织与力学性能的影响*
李小强, 李尚鹏, 丁艳林, 马国俊, 金培鹏
青海大学青海省高性能轻金属合金及深加工工程技术研究中心,青海省新型轻合金重点实验室,西宁 810016
Effect of High Energy Milling on the Microstructure and Mechanical Properties of Mg-Zn-Zr Alloy
LI Xiaoqiang, LI Shangpeng, DING Yanlin, MA Guojun, JIN Peipeng
Qinghai Provincial Key Laboratory of New Light Alloys,Qinghai Provincial Engineering Research Center of High Performance Light Metal Alloys and Forming, Qinghai University, Xining 810016
下载:  全 文 ( PDF ) ( 1942KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在氩气条件下以400 r/min高能球磨镁合金粉末,并将球磨后的粉末经过冷压—热压烧结—热挤压成型。研究了不同球磨时间的粉末以及挤压态样品的微观组织和力学性能。结果表明:随着球磨时间的延长,粉末颗粒尺寸可以细化到8 μm,晶粒尺寸有效细化到34 nm,在整个球磨过程中粉末有一定程度的氧化,并伴随有MgO纳米颗粒产生。粉末经过热压烧结—热挤压成型后,材料内部有MgZn2相颗粒析出,且均匀分布于Mg基体中。随着粉末颗粒的细化,材料性能得到改善,当球磨至10 h时,粉末挤压态样品的极限拉伸强度为365 MPa,压缩屈服强度高达325 MPa,极限压缩强度保持在466 MPa。球磨至25 h,颗粒平均尺寸细化至8 μm左右,使得颗粒表面能大幅度增大,颗粒表面的氧化膜增厚,在热压烧结过程中阻碍了颗粒之间的结合,进而使得材料的力学性能恶化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李小强
李尚鹏
丁艳林
马国俊
金培鹏
关键词:  镁合金粉末  高能球磨  热压烧结  MgO纳米颗粒    
Abstract: High-energy milling of Mg alloy powder was conducted in argon atmosphere, and then the cold-pressing, hot-pressing sintering and hot extrusion of the milled powder was performed. The microstructure and mechanical properties of the as-extruded samples at different ball milling conditions was studied. The results indicated that with the increasing milling time, the particle size was refined to 8 μm, and grain size was about 34 nm, oxidation of the powders still occurred during the process, nano-MgO particles were also produced. Precipitated phase (MgZn2) existed in the extruded alloys, and uniformly distributed in the Mg matrix. With refined particles, the material performance was significantly improved, when the milling time was up to 10 h, the ultimate tensile strength and compress yield strength of the as-extruded samples were 365 MPa and 325 MPa, respectively, the ultimate compression strength kept in 466 MPa. When the milling time was 25 h, the average particle size of the powders was about 8 μm, accompanied with increased surface energy and thickened oxide film of the particles, which resulted in the bad combination between particles and opposite effect on the mechanical properties of the material.
Key words:  magnesium alloy powder    high-energy milling    hot pressed sintering    nano-MgO particles
出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TB31  
基金资助: 国家自然科学基金(51661028);青海省科技厅基础研究项目(2015-ZJ-736)
通讯作者:  马国俊:通讯作者,男,1981年生,博士,副教授,硕士研究生导师,研究方向为金属基复合材料 E-mail:mgj2150@126.com   
作者简介:  李小强:男,1990年生,硕士研究生,研究方向为金属基复合材料 E-mail:lixiaoqiangcn@sina.com
引用本文:    
李小强, 李尚鹏, 丁艳林, 马国俊, 金培鹏. 高能球磨对Mg-Zn-Zr合金微观组织与力学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 77-80.
LI Xiaoqiang, LI Shangpeng, DING Yanlin, MA Guojun, JIN Peipeng. Effect of High Energy Milling on the Microstructure and Mechanical Properties of Mg-Zn-Zr Alloy. Materials Reports, 2017, 31(18): 77-80.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.016  或          https://www.mater-rep.com/CN/Y2017/V31/I18/77
1 Dargush M S, Dunlop G L, Pettersen K. Magnesium alloys and their applications [M]. Wiley-VCH, 2000.
2 Smola B, StulíKová I, Buch F V, et al. Structural aspects of high performance Mg alloys design [J]. Mater Sci Eng A, 2002,324:113.
3 Agnew S R, Yoo M H, Tomé C N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y [J]. Acta Mater, 2001,49(20):4277.
4 Lin J, Wang Q, Peng L, et al. Effect of the cyclic extrusion and compression processing on microstructure and mechanical properties of as-extruded ZK60 magnesium alloy [J]. Mater Trans, 2008,49(5):1021.
5 Asgharzadeh H, Yoon E Y, Chae H J, et al. Microstructure and mechanical properties of a Mg-Zn-Y alloy produced by a powder me-tallurgy route [J]. J Alloys Compd, 2014,586(4):S95.
6 Tanno O, Ohuchi K, Matuzawa K, et al. Effect of rare-earth elements on the structures and mechanical properties of Mg-8%Li alloys [J]. J Japan Institute Light Metals, 1992,42(1):3.7 Huot J, Skryabina N Y, Fruchart D. Application of severe plastic deformation techniques to magnesium for enhanced hydrogen sorption properties [J]. Metals-Open Access Metall J, 2012,2(4):329.
8 Taleghani M A J, Torralba J M. The microstructural evolution of a pre-alloyed AZ91 magnesium alloy powder through high-energy mil-ling and subsequent isothermal annealing [J]. Mater Lett, 2013,98(5):182.
9 Mora E, Garcés G, Oñorbe E, et al. High-strength Mg-Zn-Y alloys produced by powder metallurgy [J]. Scr Mater, 2009,60(9):776.
10Fang W B, Fang W, Sun H F. Preparation of high-strength Mg-3Al-Zn alloy with ultrafine-grained microstructure by powder metallurgy[J]. Powder Technol, 2011,212(1):161.
11Zhang Z Y, Yu H S,Wang S Q,et al. High strength ZK60 magnesium alloy produced by rapid solidification/powder metallurgy process [J]. Mater Eng, 2010(5):72(in Chinese).
张振亚, 于化顺, 王少卿, 等. 快速凝固/粉末冶金法制备ZK60高强镁合金 [J]. 材料工程, 2010(5):72.
12Zhang Z, Yang R, Chen G, et al. Correlation between microstructure and tensile behavior in powder metallurgy ZK60 alloys [J]. Mater Lett, 2012,89:166.
13Lin J B, Ren W J, Wang X Y. Research on the tension-compression asymmetry of as-extruded ZK60 magnesium alloys at room temperature [J]. Acta Metall Sin, 2016,52(3):264(in Chinese).
林金保, 任伟杰, 王心怡. 挤压态ZK60镁合金室温拉-压不对称性研究 [J]. 金属学报, 2016, 52(3):264.
14Wang H, Hu L X, Chen X J, et al. Preparation of nanocrystalline magnesium alloy powders by high-energy ball milling [J]. Powder Metall Technol, 2008, 26(6):403(in Chinese).
王珩, 胡连喜, 陈先觉, 等. 高能球磨制备纳米晶镁合金粉末的研究 [J]. 粉末冶金技术, 2008,26(6):403.
15Xiong Y, Yu Q, Jiang Y. An experimental study of cyclic plastic deformation of extruded ZK60 magnesium alloy under uniaxial loa-ding at room temperature [J].Int J Plasticity, 2014,53(1):107.
16Feng Jie, Sun Hongfei, Li Xuewen, et al. Microstructures and mechanical properties of the ultrafine-grained Mg-3Al-Zn alloys fabricated by powder metallurgy [J]. Adv Powder Technol, 2016,27(2):550.
[1] 郭岩岩, 历长云, 冀国良, 许磊, 王亚松, 米国发. 粉末致密化过程数值模拟研究现状[J]. 材料导报, 2022, 36(18): 20080161-7.
[2] 安宁, 吴浩恺, 朱敏, 郑月红, 占发奇, 喇培清. 盐助燃烧合成法大规模制备超细LaB6粉体及其烧结性能[J]. 材料导报, 2022, 36(11): 21010240-7.
[3] 唐卫岗, 胡岭, 黄世盛, 陈融, 郭冰, 沈杭燕. 高能球磨法制备微米银片的工艺研究[J]. 材料导报, 2021, 35(z2): 428-432.
[4] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[5] 徐枫, 严红革, 陈吉华, 张正富, 范长岭. 原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响[J]. 材料导报, 2020, 34(6): 6039-6043.
[6] 贾碧, 李晓博, 潘复生, 王如转, 袁玉娇, 罗春希, 朱钊, 刘汉蕾. 热压烧结温度对石墨烯/氧化铝复合材料力学性能的影响[J]. 材料导报, 2020, 34(24): 24001-24004.
[7] 张强, 蔡璋文, 董兰静, 柏跃磊, 朱春城. Ti2AlC陶瓷弥散增强Al基复合材料的制备及剪切性能[J]. 材料导报, 2020, 34(20): 20086-20090.
[8] 张晶, 李红霞, 刘国齐. 高能球磨-盐辅助氮化低温合成α-Si3N4粉体[J]. 材料导报, 2019, 33(5): 739-743.
[9] 许慧, 赵洋, 任淑彬, 曲选辉. 真空压力熔渗与热压烧结制备(SiCp+Al2O3f)/2024Al复合材料的组织与拉伸性能分析[J]. 材料导报, 2018, 32(6): 951-956.
[10] 董善亮,霍思嘉,甄淑颖,张宇民,王玉金. 烧结温度对反应热压烧结制备ZrB2-ZrC-W2Zr复合材料组织和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 1994-1997.
[11] 宋世金, 虞澜, 傅佳, 陈琪, 邱兴煌, 钟毅. 热压烧结增强Ca3Co4O9多晶的c轴择优织构和电输运性质的研究*[J]. 《材料导报》期刊社, 2017, 31(4): 5-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed