Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (14): 2355-2359    https://doi.org/10.11896/j.issn.1005-023X.2018.14.006
  无机非金属及其复合材料 |
cBN-Ti-Al-Si原位合成PcBN复合材料及其力学性能
莫培程, 吴一, 于文霖, 王吉林, 邹正光, 钟生林, 王鹏
桂林理工大学有色金属及材料加工新技术教育部重点实验室,桂林 541004
In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property
MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng
Key Laboratory of Non-ferrous Materials and New Processing Technology of Ministry of Education, Guilin University of Technology, Guilin 541004
下载:  全 文 ( PDF ) ( 2976KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将立方氮化硼微粉和Ti、Al、Si微粉按照不同的质量比进行混料,在高温(1 500 ℃)、超高压(5 GPa)下进行原位烧结。利用X 射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)以及X射线色散能谱(EDS)对烧结体的物相构成、显微结构以及各类元素分布进行了分析,并测试了样品的气孔率、相对密度、抗弯强度和显微硬度。研究结果表明,cBN-Ti-Al-Si体系在1 500 ℃下出现了新物相(TiB2、AlN、TiSi2、Ti5Si3、Si3N4)。通过对不同配方体系进行研究可以确定,当Si含量为15%(质量分数)时,PcBN的综合性能最好,其中显微硬度为34.58 GPa,抗弯强度为799 MPa,气孔率为0.21%,相对密度为98.5%;当体系中的Si含量为20%(质量分数)时,PcBN的性能急剧下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
莫培程
吴一
于文霖
王吉林
邹正光
钟生林
王鹏
关键词:  高温超高压  PcBN  结合剂  力学性能    
Abstract: The polycrystalline cubic boron nitride (PcBN) composites were sintered for 20 min at high temperature (1 500 ℃) under high pressure (5 GPa) using cubic boron nitride, Ti, Al and Si powders as raw materials. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and X-ray dispersive energy dispersive spectroscopy (EDS) were performed to study the phase, microstructure and element distrubiton of the samples. Simultaneously, the porosity, relative density, flexural strength and hardness of the samples were also inveitigated. The characterization results indicated that the new phase emerged in the cBN-Ti-Al-Si system were TiB2, AlN, TiSi2, Ti5Si3 and Si3N4. In addition, when the Si content was 15wt%, PcBN presented the best comprehensive performance, where the porosity, relative density, hardness and bending strength were 0.21%,98.5%,34.58 GPa and 799 MPa, respectively. However, when the Si content was increased to 20wt%, the corresponding performance of PcBN will be decreased rapidly.
Key words:  high temperature and high pressure    PcBN    binder    mechanical property
               出版日期:  2018-07-25      发布日期:  2018-07-31
ZTFLH:  TB333  
基金资助: 广西创新驱动发展专项资金项目(AA17204020-1);广西超硬材料重点实验室开放研究课题(2017-K-01);广西自然科学基金(2016GXNSFBA380155)
通讯作者:  吴一,男,1958年生,博士,教授,主要从事超硬材料研究 E-mail:wuyifirst@163.com   
作者简介:  莫培程:男,1993年生,硕士,主要从事聚晶立方氮化硼的研究
引用本文:    
莫培程, 吴一, 于文霖, 王吉林, 邹正光, 钟生林, 王鹏. cBN-Ti-Al-Si原位合成PcBN复合材料及其力学性能[J]. 《材料导报》期刊社, 2018, 32(14): 2355-2359.
MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property. Materials Reports, 2018, 32(14): 2355-2359.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.14.006  或          http://www.mater-rep.com/CN/Y2018/V32/I14/2355
1 Chen Y J, Wang H K, Peng J, et al. Production methods and application of polycrystalline cubic boron nitride[J]. Diamond Abrasives and Engineering,2015,35(2):74(in Chinese).
陈永杰,王海阔,彭进,等.聚晶立方氮化硼的制备方法及应用进展[J].金刚石与磨料磨具工程,2015,35(2):74.
2 Zhao X L. New polycrystalline cubic boron nitride (PcBN) cutting tool material development and its mechanism[D]. Jinan: Shandong University,2011(in Chinese).
赵兴利.新型聚晶立方氮化硼(PcBN)刀具材料研制及其切削机理研究[D].济南:山东大学,2011.
3 Ren Z H. Preparation and characterization of low melting vitrified bond cBN composites by pressureless sintering[D]. Zhengzhou: Zhengzhou University,2010(in Chinese).
任振火.常压下低融结合剂cBN复合材料的制备与性能表征[D].郑州:郑州大学,2010.
4 Liu Y J, He D W, Wang P, et al. Microstructural and mechanical properties of cBN-Si composites prepared from the high pressure infiltration method[J]. International Journal of Refractory Metals and Hard Materials,2016,61:1.
5 Zhang L L, Kou Z L, Xu C, et al. Sintering behaviors of fine-grained cBN-10wt.% Al3.21Si0.47 system under high pressure[J]. Diamond & Related Materials,2012,29:84.
6 Li D, Liu J, Hu J, et al. Performance and application of polycrystalline cubic boron nitride[J]. Journal of Tool Technology,2006(12):11(in Chinese).
李丹,刘进,胡娟,等.聚晶立方氮化硼材料的性能及其应用[J].工具技术,2006(12):11.
7 Mettaya Kitiwan,Akihiko Ito,Jiangfeng Zhang,et al. Densification and mechanical properties of cBN-TiN-TiB2 composites prepared by spark plasma sintering of SiO2-coated cBN powder[J].Journal of the European Ceramic Society,2014,34:3619.
8 Jiang W, Zhou W N, Ling F. Sintered cBN-Ti-B-Al-SiC under high temperature and high pressure[J]. Journal of Superhard Material Engineering,2010,22(4):24(in Chinese).
姜伟,周卫宁,林峰.cBN-Ti-B-Al-SiC系在高温高压下的烧结[J].超硬材料工程,2010,22(4):24.
9 Yu L,Zi L K,Wang H K,et al. High pressure sintering behavior and mechanical properties of cBN-Ti3Al and cBN-Ti3Al-Al composite materials[J].High Pressur Reserearch,2012,32(4):524.
10 Rong X Z, Tsurumi T, Fukunaga O, et al. High-pressure sintering of cBN-TiN-Al composite for cutting tool application[J]. Diamond and Related Materials,2002,11(2):280.
11 Zhao Y C, Wang M Z. Interaction of Al and cBN under high tempe-rature and high pressure[J]. Journal of Inorganic Materials,2008,23(2):253(in Chinese).
赵玉成,王明智.Al与cBN在高温高压下的相互作用[J].无机材料学报,2008,23(2):253.
12 Yuan Y G, Cheng X Z, Chang R, et al. Reactive sintering cBN-Ti-Al composites by spark plasma sintering[J]. Diamond & Related Materials,2016,69:138.
13 Klimczyk P, Benko E, Lawniczak-Jablonska K, et al. Cubic boron nitride-Ti/TiN composites: Hardness and phase equilibrium as function of temperature[J]. Journal of Alloys and Compounds,2004,382(2004):195.
14 Wang Y F. High toughness polycrystalline cubic boron nitride (PcBN) compound preparation technology and performance study[D]. Zhengzhou: Henan University of Technology,2012(in Chinese).
王勇峰.高韧性聚晶立方氮化硼(PcBN)复合片制备技术及性能研究[D].郑州:河南工业大学,2012.
15 Xue Y. Interaction of cBN and bonds in PcBN[D]. Qinhuangdao: Yanshan University,2008(in Chinese).
薛勇.PcBN中cBN与结合剂的相互作用研究[D].秦皇岛:燕山大学,2008.
16 Liu W Y. Fabrication and characterization of porous product cera-mics with high porosity and high strength[D]. Beijing: Tsinghua University,2009(in Chinese).
刘伟渊.高气孔率、高强度多孔氧化铝陶瓷的制备及表征[D].北京:清华大学,2009.
17 Zhang C P, Gao X W, Ru H Q, et al. Effect of forming pressure on microstructure and mechanical properties of SiC/TiB2 composites[J]. Journal of Inorganic Materials,2017,32(5):502(in Chinese).
张翠萍,高向伟,茹红强,等.成形压力对SiC/TiB2复合材料组织与性能的影响[J].无机材料学报,2017,32(5):502.
18 Hu H L, Yao D X, Xia Y F, et al. Mechanical properties of reaction-bonded Si3N4/SiC composite ceramics[J]. Journal of Inorganic Materials,2014,29(6):594(in Chinese).
胡海龙,姚冬旭,夏咏锋,等.反应烧结制备Si3N4/SiC复相陶瓷及其力学性能研究[J].无机材料学报,2014,29(6):594.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[15] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed