Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 83-86    https://doi.org/10.11896/j.issn.1005-023X.2017.04.019
  材料研究 |
配分时间对Q&P钢力学性能及显微组织的影响*
李辉1, 米振莉2, 张华3, 赵奇1
1 烟台南山学院工学院, 烟台265700;
2 北京科技大学冶金工程研究院, 北京100083;
3 山东南山铝业股份有限公司国家铝合金压力加工工程技术研究中心, 烟台 265713
Influence of Partition Time on Mechanical Properties and
Microstructure of Q&P Steel
LI Hui1, MI Zhenli2, ZHANG Hua3, ZHAO Qi1
1 College of Engineering,Yantai Nanshan University, Yantai 265700;
2 Engineering Research Institute,University of Science and Technology Beijing, Beijing 100083;
3 National Engineering Research Center for Plastic Working of Aluminum Alloys, Shandong Nanshan Aluminum Co., Ltd., Yantai 265713
下载:  全 文 ( PDF ) ( 1898KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 设计了一种中碳中锰Q&P(Quenching and partitioning)钢,基于热力学平衡理论计算分析了其相变过程,通过扫描电镜(SEM)、背散射电子衍射(EBSD)和透射电镜(TEM)研究了实验钢经不同热处理后的微观组织,测试了其力学性能,并采用X射线衍射仪(XRD)进一步分析了拉伸断裂前后残留奥氏体含量的演变规律。结果表明:室温下实验钢微观组织为板条状马氏体和弥散分布的残留奥氏体;残留奥氏体主要存在于马氏体板条之间和原始奥氏体晶界处;随配分时间延长,抗拉强度逐渐降低,延伸率呈现升高趋势;试样拉断后,断口处残留奥氏体含量在3.5%~4.5%之间,明显低于拉伸前的含量(6.94%~10.78%),说明大部分残留奥氏体在拉伸过程中发生了TRIP效应,提高了实验钢的塑性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李辉
米振莉
张华
赵奇
关键词:  Q&P工艺  微观组织  残留奥氏体  配分时间    
Abstract: Based on the regulating and controlling theory of thermodynamic, the microstructure evolution and mechanical properties of a new designed medium-carbon-manganese steel after Q&P process was studied by SEM,EBSD and TEM. The mecha-nical properties was tested,and the evolution mechanism of retained austenite was discussed by XRD. The results indicated that the microstructure was consisted of lath martensite and dispersively distributed retained austenite; the retained austenite was emerged in the form of thin film between martensite laths and blocks along the grain boundaries; the strength decreased and the elongation increased with the increase of partition time; the fraction of retained austenite decreased from 6.94%-10.78% to 3.5%-4.5% after tensile test, which indicated the occurrence of TRIP effect and the increase of ductility.
Key words:  Q&P process    microstructure    retained austenite    partition time
出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TG151.2  
基金资助: *国家自然科学基金(51101048);国家863项目(2012AA03A508)
作者简介:  李辉:男,1983年生,博士,主要从事特殊钢的开发及组织性能优化研究 E-mail:lhlwj8888@163.com
引用本文:    
李辉, 米振莉, 张华, 赵奇. 配分时间对Q&P钢力学性能及显微组织的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 83-86.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.019  或          https://www.mater-rep.com/CN/Y2017/V31/I4/83
1 De M E,Gibbs P J,Speer J G. Strategies for third generation advanced high-strength steel development[J]. Iron Steel Technol,2010,7(11):133.
2 Speer J G,Matlock D K,Moor D E,et al.Highights of recent progress in automotive sheet steel development[J].World Iron Steel,2013,13(5):48(in Chinese).
Speer J G,Matlock D K,Moor D E,等. 汽车用钢的最新研究进展[J].世界钢铁,2013,13(5):48.
3 Matlock D K,Speer J G. Third generation of AHSS: Microstructure design concepts[M].London:Springer,2009,185.
4 Speer J G,Matlock D K,et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Mater,2003,51(9):2611.
5 Speer J G,Streicher A M,Matlock D K,et al. Quenching and partitioning: A fundamentally new process to create high strength TRIP sheet microstructures[C]//Minerals,Met Mat Society,MPMD.Chicago,2003:505.
6 Edmonds D V,He K,Rizzo F C,et al. Quenching and partitioning martensite-A novel steel heat treatment[J]. Mater Sci Eng A,2006,438:25.
7 Santofimia M J,Zhao L,Petrov R,et al. Microstructure development during the quenching and partitioning process in a newly designed low carbon steel[J]. Acta Mater,2011,59(15):6059.
8 Thomas G A,Speer J G,Matlock D K. Quenched and partitioned microstructures produced via gleeble simulations of hot-strip mill coo-ling practices[J]. Metall Mater Trans A,2011,2:1.
9 Sun J,Yu H. Microstructure development and mechanical properties of quenching and partitioning(Q&P) steel and an incorporation of hot-dipping galvanization during Q&P process[J]. Mater Sci Eng A,2013,586(1):100.
10 Moor E D,Lacroix S,Clarke A J,et al. Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels[J]. Metall Mater Trans A,2008,39(11):2586
11 Tariq F,Baloch R A. One-step quenching and partitioning heat treatment of medium carbon low alloy steel[J]. J Mater Eng Perform,2014,23(5):1726.
12 Paravicini B E,Santofimia M J,Zhao L,et al. Microstructure, tensile and toughness properties after quenching and partitioning treatments of a medium-carbon steel[J]. Mater Sci Eng A,2013,559:486.
13 Xu Zuyao, Li Xuemin. Diffusion of carbide during the formation of low carbon martensite[J]. Acta Metall Sin,1983,19(2):83(in Chinese).
徐祖耀,李学敏. 低碳马氏体形成时碳的扩散[J].金属学报,1983,19(2):83.
14 Jiang Haitao,Tang Di,Mi Zhenli,et al. Effect of partitioning para-meters on the retained austenite in low-carbon Q&P steel[J]. Mater Sci Technol,2011,19(1):99(in Chinese).
江海涛,唐荻,米振莉,等. 配分工艺对低碳Q&P钢中残余奥氏体的影响[J]. 材料科学与工艺,2011,19(1):99.
15 Jiang H T,Wu H B,Tang D,et al. Influence of isothermal bainitic processing on the mechanical properties and microstructure characterization of TRIP steel[J]. J University Science Technology Beijing,2008,15(5):574.
16 Hillert M,Agren J. On the definitions of paraequilibrium and orthoe-quilibrium[J]. Scr Mater,2004,50(5):697.
17 Hillert M,Agren J. Reply to comments on “On the definition of paraequilibrium and orthoequilibrium”[J]. Scr Mater,2005,52(1):87.
18 徐祖耀.马氏体相变与马氏体(第二版)[M].北京:科学出版社,1999.
19 Martins A R A,Rizzo F,Coelho D,et al. Microstructure and mechanical properties of Ni-added high strength steels subjected to quenching and partitioning (Q&P) heat treatment[C]//Materials Science & Technology 2009 Conference and Exhibition.Pittsburgh,2009.
[1] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[2] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[3] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[4] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[5] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[6] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[7] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[8] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[9] 朱轩,杨晓益, 陆鑫, 杨书汉. 电弧脉冲对6005A-T6铝合金CMT-P焊接接头组织和性能的影响[J]. 材料导报, 2024, 38(23): 23090035-7.
[10] 王沛锦, 卓家乐, 艾桃桃, 董洪峰. L12型纳米有序相析出强化(FeNiCoCr)93Al5Ti2高熵合金[J]. 材料导报, 2024, 38(22): 23110207-5.
[11] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[12] 郭伟玲, 邢志国, 李鹏, 马国政, 王海斗. 冷喷涂铜基复合涂层及后处理技术的研究现状[J]. 材料导报, 2024, 38(19): 23010049-13.
[13] 杨贵荣, 宋文明, 许可, 马颖. CeO2对WC/Ni复合熔覆层微观组织与性能的影响[J]. 材料导报, 2024, 38(19): 23070014-7.
[14] 郭晖, 曹晓卿, 孙逸舟, 林鹏, 刘亚玲, 李培友. 轻质高熵合金微观组织及力学性能研究进展[J]. 材料导报, 2024, 38(18): 23020177-10.
[15] 陶宏伟, 禹庭, 曹明轩, 吴仲恒, 蔡召兵, 刘敏, 闫星辰. 激光选区熔化CoCrMo合金的组织研究及生物应用[J]. 材料导报, 2024, 38(17): 23030026-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed