Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 147-152    https://doi.org/10.11896/j.issn.1005-023X.2017.014.031
  计算模拟 |
相位角加载条件下2A12铝合金多轴疲劳失效行为*
陈亚军, 王先超, 王付胜, 周剑, 刘辰辰
中国民航大学中欧航空工程师学院, 天津 300300;
Failure Behavior of Multiaxial Fatigue for 2A12 Aluminum Alloy Subjected to Different Phase Angle Loading Conditions
CHEN Yajun, WANG Xianchao, WANG Fusheng, ZHOU Jian, LIU Chenchen
Sino-European Institute of Aviation, Civil Aviation University of China, Tianjin 300300;
下载:  全 文 ( PDF ) ( 1939KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用SDN100/1000电液伺服拉扭复合疲劳试验机对2A12铝合金进行不同相位角加载条件下多轴疲劳试验研究,通过加载循环曲线和微观断口形貌分析失效机理,对不同损伤累积模型的预测效果进行评价,修正Manson损伤曲线模型以期达到更好的预测效果。结果表明:单级加载条件下,随相位角正弦值的增加疲劳寿命线性递减,当相位角为0°时,轴向硬化、软化交替出现,切向出现循环硬化,90°加载下轴向和切向单独作用效果明显;两级累积路径下,随一级加载周次的增加多轴疲劳寿命延长,0°加载阶段轴向和切向都出现循环硬化现象,两种路径下断口都呈现出多裂纹源特征,在裂纹源区附近观察到台阶状形貌,扩展区存在大量划痕和鳞片状花样;修正后的Manson损伤曲线模型预测误差均在15%以内。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈亚军
王先超
王付胜
周剑
刘辰辰
关键词:  2A12  铝合金  相位角  多轴疲劳  失效机理  损伤累积模型    
Abstract: The multiaxial fatigue behavior of 2A12 aluminum alloy was studied via SDN100/1000 electro-hydraulic servo tension-torsion fatigue tester under different phase angles and the failure mechanism was analysed by cyclic curve of loading and microscopic morphology. The miner model, Manson damage curve model and toughness degradation model were used to evaluate the accuracy of fatigue life prediction, and the Manson damage model would be revised in order to improve the prediction accuracy. The results show that: under the one-stage loading, the fatigue life decreases approximately linear with the increasing of the sine of phase angle. For the phase angle 0°, hardening and softening appear alternately in the axial direction, cyclic hardening shows in torsional direction. The effect of action in axial and torsional direction is significant for the 90° phase angle. The fatigue life prolongs with the cycle of first stage loading increases under the two stage cumulative paths. The hardening appears in axial and torsional directions for the 0° loading, and the multi-crack initiation morphology is observed under the two cumulative paths. The stepped pattern can be detected near the crack initial region, as well as the scratch and scale pattern in the crack extension zone. A prediction error of lower than 15% was achieved for the modified Manson damage curve model.
Key words:  2A12 aluminum alloy    phase angle    multiaxial fatigue    failure mechanism    cumulative damage model
出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  O346.2  
基金资助: *国家自然科学基金(11502285);中央高校基本科研业务费中国民航大学专项(3122017112)
作者简介:  陈亚军:男,1976年生,博士,副教授,主要从事飞机结构材料失效分析 E-mail:2292598008@qq.com
引用本文:    
陈亚军, 王先超, 王付胜, 周剑, 刘辰辰. 相位角加载条件下2A12铝合金多轴疲劳失效行为*[J]. 《材料导报》期刊社, 2017, 31(14): 147-152.
CHEN Yajun, WANG Xianchao, WANG Fusheng, ZHOU Jian, LIU Chenchen. Failure Behavior of Multiaxial Fatigue for 2A12 Aluminum Alloy Subjected to Different Phase Angle Loading Conditions. Materials Reports, 2017, 31(14): 147-152.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.031  或          https://www.mater-rep.com/CN/Y2017/V31/I14/147
1 伍颖. 断裂与疲劳[M].武汉:中国地质大学出版社,2008.
2 尚德广,王德俊. 多轴疲劳强度[M].北京:科学出版社,2007.
3 Zhao Ping. Study on multiaxial low cycle fatigue of aero-engine single crystal blades[D]. Changsha: Central South University,2011(in Chinese).
赵萍.航空发动机单晶叶片的多轴低周疲劳研究[D].长沙:中南大学,2011.
4 Ma Nannan, Tao Chunhu, He Yuhuai, et al. Research progress of multiaxial fatigue test methods on blades of aviation engine[J]. J Aeronautical Mater,2012,32(6):44(in Chinese).
马楠楠, 陶春虎, 何玉怀,等. 航空发动机叶片多轴疲劳试验研究进展[J]. 航空材料学报,2012,32(6):44.
5 Gao Yang, Bai Guangchen, Zhang Yingli. Reliability analysis of multiaxial low cycle fatigue life for turbine disk[J]. Acta Aeronautica et Astronautica Sinica,2009,30(9):1678(in Chinese).
高阳, 白广忱, 张瑛莉. 涡轮盘多轴低循环疲劳寿命可靠性分析[J]. 航空学报,2009,30(9):1678.
6 Peng Liqiang, Wang Jian. Research on low cycle-multiaxial fatigue-creep life prediction at high temperature for turbine blade[J]. J Ae-rospace Power,2009,24(7):1549(in Chinese).
彭立强, 王健. 涡轮叶片高温多轴低周疲劳/蠕变寿命预测[J]. 航空动力学报,2009,24(7):1549.
7 Karolczuk A, Macha E. A review of critical plane orizentations in multiaxial fatigue failure criteria of metallic materials[J]. Int J Fract,2005,134:267.
8 Wang Y Y, Yao W X. Evaluation and comparision of several multiaxial fatigue criteria[J]. Int J Fatigue,2004,26(1):17.
9 Wu Zhirong, Li Ling, Hu Xuteng, et al. A new establishing method of multi-axial fatigue life model[J]. J Harbin Institute Technol,2013,45(11):80(in Chinese).
吴志荣, 李玲, 胡绪腾, 等. 多轴疲劳寿命模型建立新方法[J]. 哈尔滨工业大学学报,2013,45(11):80.
10 Shi Xinhong, Bao Rui, Zhang Jianyu, et al. Comparative study of multiaxial high-cycle fatigue-prediction criteria[J]. J Aerospace Power,2008,23(11):2007(in Chinese).
时新红, 鲍蕊, 张建宇,等. 多轴高周疲劳失效准则的对比分析[J]. 航空动力学报, 2008,23(11):2007.
11 Zhou Wei, Liu Yilun, Li Songbai, et al. Multiaxial fatigue life prediction model based on critical plane approach[J]. Mater Rev:Res,2015,29(8):147(in Chinese).
周维, 刘义伦, 李松柏,等. 一种基于临界平面法的多轴疲劳寿命预测模型[J]. 材料导报:研究篇,2015,29(8):147.
12 Jiang Y Y, Hertel O, Vormwald M. An experimental evaluation of three critical plane multiaxial fatigue criteria[J]. Sci Direct,2007,29(8):1490.
13 Li Jing, Sun Qiang, Qiao Yanjiang, et al. The biaxial fatigue life prediction model based on the critical plane approach under combined loading of tension and torsion[J]. Chin J Solid Mech,2010,31(1):101(in Chinese).
李静, 孙强, 乔艳江,等. 基于临界平面法的拉扭双轴疲劳寿命估算模型[J]. 固体力学学报,2010,31(1):101.
14 Jiang Chao, Li Bochuan, Han Xu. New multiaxial fatigue life prediction model with shear form based on the strain path[J]. J Mech Eng,2014,50(16):21(in Chinese).
姜潮, 李博川, 韩旭. 一种考虑路径影响的剪切式多轴疲劳寿命模型[J]. 机械工程学报,2014,50(16):21.
15 Zhang Lei, Yang Zichun, Cao Yueyun. New low cycle fatigue da-mage accumulation model and experimental results[J]. Chin Mechan Eng,2011,22(16):1912(in Chinese).
张磊, 杨自春, 曹跃云. 一种新的低周疲劳损伤累积模型及试验验证[J]. 中国机械工程,2011,22(16):1912.
16 Sonsino C M, Lagoda T, Demofonti G. Damage accumulation under variable amplitude loading of welded medium-and high-strength steels[J]. Int J Fatigue,2004,26(5):487.
17 Djebli A, Aid A, Bendouba M, et al. A non-linear energy model of fatigue damage accumulation and its verification for AL-2024 aluminum alloy[J]. Int J Nonl-Linear Mech,2013,51(51):145.
18 Zuo F J, Huang H Z, Zhu S P, et al. Fatigue life prediction under variable amplitude loading using a non-linear damage accumulation model[J]. Int J Damage,2015,24(5):767.
19 Feng Sheng, Cheng Yanping, Zhao Yali, et al. Linear fatigue da-mage cumulation theory[J]. J Harbin Institute Technol,2003,35(5):608(in Chinese).
冯胜, 程燕平, 赵亚丽,等. 线性疲劳损伤累积理论的研究[J]. 哈尔滨工业大学学报,2003,35(5):608.
20 Taheri S, Vincent L, Le-Roux J C. Classification of metallic alloys for fatigue damage accumulation: A conservation model under strain control for 304 stainless steels[J]. Int J Fatigue,2015,70:73.
21 Manson S, Halford G R. Practical implementation of the double li-near damage rule and damage curve approach for treating cumulative fatigue damage[J]. Int J Fract,1981,17(4):169.
22 Ye Duyi, Wang Dejun, Tong Xiaoyan, et al. A new approach for studying fatigue damage[J]. J Exp Mech,1999,14(1):80(in Chinese).
叶笃毅, 王德俊, 童小燕,等. 一种基于材料韧性耗散分析的疲劳损伤定量新方法[J].实验力学,1999,14(1):80.
[1] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[2] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[3] 张京京, 易幼平, 黄始全, 何海林, 董非, 王当. 2195铝合金中温变形条件下的静态再结晶机理及动力学[J]. 材料导报, 2024, 38(4): 22040369-9.
[4] 芦燕, 余振超, 王如琦. 模拟海水环境下G20Mn5QT/Q355异种钢对接焊接接头腐蚀疲劳性能试验研究[J]. 材料导报, 2024, 38(19): 22090030-7.
[5] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[6] 张彪, 刘家招, 杨鑫三, 孙宇萱. 基于XFEM的汽车铝合金断裂行为表征[J]. 材料导报, 2024, 38(19): 22100262-5.
[7] 蔡佳思, 刘湘波, 王新元, 魏艳红. 强制流动下铝铜合金激光焊接熔池凝固过程组织演化模拟[J]. 材料导报, 2024, 38(19): 23060085-7.
[8] 罗广瑞, 吴子彬, 长海博文, 翁文凭, 王东涛, 李一峰, 毛志福, 董鑫, 冯志鑫, 陈希, 张海涛, 朱慧颖, 张波. 车用铝合金弯曲成形回弹行为研究进展[J]. 材料导报, 2024, 38(18): 23030082-10.
[9] 邱飒蔚, 雷贝, 叶拓, 张越, 蒋家传, 王涛. 铝合金自冲铆疲劳性能及寿命预测[J]. 材料导报, 2024, 38(18): 24030108-7.
[10] 刘书俊, 肖文龙, 杨昌一, 吴舒凡. 激光粉末床熔融增材制造耐热铝合金的研究进展[J]. 材料导报, 2024, 38(18): 24080026-9.
[11] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[12] 王梦强, 陈留刚, 孙红刚, 杜一昊, 司瑶晨, 李红霞. 镁铝合金添加剂对SiC-MgAl2O4材料显微结构和性能的影响[J]. 材料导报, 2024, 38(16): 23050121-6.
[13] 许玉婷, 李玉泽, 王建元. 选区激光熔化铝合金及其复合材料的研究进展[J]. 材料导报, 2024, 38(15): 23100101-13.
[14] 徐泽, 徐振, 吕哲, 宋华, 陈庆强. Y对6082铝合金铸轧板微观结构及性能的影响[J]. 材料导报, 2024, 38(15): 23080147-6.
[15] 张志强, 贺世伟, 李涵茜, 路学成, 张天刚, 王浩. 激光与CMT+P电弧复合增材工艺对2024铝合金气孔缺陷的影响规律[J]. 材料导报, 2024, 38(14): 23040011-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed