Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 24120104-8    https://doi.org/10.11896/cldb.24120104
  无机非金属及其复合材料 |
微生物固土改良效果影响因素及作用机理试验研究
张敏霞1,2,*, 刘鹏飞1, 徐平1,2, 席哲1, 张程烨1
1 河南理工大学土木工程学院,河南 焦作 454003
2 生态建筑与环境构建河南省工程技术研究中心,河南 焦作 454003
Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect
ZHANG Minxia1,2,*, LIU Pengfei1, XU Ping1,2, XI Zhe1, ZHANG Chengye1
1 College of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China
2 Eco-Architecture and Environmental Construction Henan Engineering Technology Research Center, Jiaozuo 454003, Henan, China
下载:  全 文 ( PDF ) ( 23021KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微生物诱导碳酸钙沉淀(Microbially induced calcium carbonate precipitation,MICP)可有效改良工程渣土,提高其物理力学特性,并显著增强其抗风蚀扬尘能力。通过微生物固化改良工程渣土单因素正交试验系统分析微生物固土改良效果的关键影响因素,辅用多种微观测试实测微生物固化工程渣土的微观形貌、晶体结构和物相组成,揭示研究微生物固化工程渣土微观结构和抗风蚀扬尘宏微观机制。结果表明:菌液浓度和用量、菌液与胶结液配比、胶结液配比、固化次数等因素对固化效果影响较大,据此确定了影响微生物固化工程渣土效果的关键参数;由微观结构分析发现微生物固化工程渣土的土颗粒表面和孔隙间均产生大量碳酸钙沉淀,有效增强了土颗粒间黏结性能,将上部土颗粒固结成具有一定厚度和强度的硬壳层,大幅度提高其抗风蚀扬尘能力。对比分析原状样和微生物固化样的重构三维空间结构,发现由微生物固土改良后的土体,其矿物沉淀大多聚集在土体上部,由此上部土体孔隙率也明显小于下部土体。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张敏霞
刘鹏飞
徐平
席哲
张程烨
关键词:  微生物固化  工程渣土  影响因素  抗风蚀扬尘  固化效果  微观机理    
Abstract: Microbially induced calcium carbonate precipitation (MICP) can effectively improve the physical and mechanical properties of engineering residue and significantly enhance its ability to resist wind erosion and dust generation. The key influencing factors of the improvement effect of microbial solidified soil were systematically analyzed by single factor orthogonal test of microbial solidified engineering residue. The microstructure, crystal structure and phase composition of microbial solidified engineering residue were measured by various microscopic tests, and the microstructure of microbial solidified engineering residue and the macro and micro mechanism of wind erosion and dust resistance were revealed. The results show that the concentration and dosage of bacteria liquid, the ratio of bacteria liquid to cementing liquid, the ratio of cementing liquid and the number of curing times have great influence on the curing effect. Based on this, the key parameters affecting the effect of microbial curing engineering muck are determined. From the microstructure analysis, it was found that a large amount of calcium carbonate precipitation was produced on the surface and between the pores of the soil particles of the microbial solidified engineering muck, which effectively enhanced the bon-ding performance between the soil particles, consolidated the upper soil particles into a hard shell layer with a certain thickness and strength, and greatly improved its wind erosion and dust resistance. By comparing and analyzing the reconstructed three-dimensional spatial structure of the original sample and the microbial solidified sample, it is found that the mineral precipitation of the soil improved by the microbial solidified soil is mostly concentrated in the upper part of the soil, and the porosity of the upper soil is also significantly smaller than that of the lower soil.
Key words:  microbial solidification    construction waste    influencing factor    anti-wind erosion dust    curing effect    microscopic mechanism
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TU44  
基金资助: 国家自然科学基金(52478250);河南省交通投资集团有限公司科技项目(HNJT2024-11)
通讯作者:  * 张敏霞,博士,河南理工大学土木工程学院教授、硕士研究生导师。目前主要从事地基与基础工程、环境岩土微生物技术等方面的研究工作。zhangminxia@126.com   
引用本文:    
张敏霞, 刘鹏飞, 徐平, 席哲, 张程烨. 微生物固土改良效果影响因素及作用机理试验研究[J]. 材料导报, 2026, 40(1): 24120104-8.
ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect. Materials Reports, 2026, 40(1): 24120104-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120104  或          https://www.mater-rep.com/CN/Y2026/V40/I1/24120104
1 Terzis D, Laloui L. Acta Geotechnica, 2019, 14(3), 639.
2 Ma G L, He X, Lu H M, et al. Chinese Journal of Geotechnical Engineering, 2021, 43(2), 290(in Chinese).
马国梁, 何想, 路桦铭, 等. 岩土工程学报, 2021, 43(2), 290.
3 Proto C J, Dejong J T, Nelson D C. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(12), 04016073.
4 Cheng Y J, Tang C S, Pan X H, et al. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(5), 1010 (in Chinese).
程瑶佳, 唐朝生, 泮晓华, 等. 防灾减灾工程学报, 2022, 42(5), 1010.
5 Dhami N K, Reddy M S, Mukherjee A. Journal of Microbiology and Biotechnology, 2013, 23(5), 707.
6 Graddy C M R, Gomez M G, Kline L M, et al. Environmental Science & Technology, 2018, 52(7), 3997.
7 Ng W S, Lee M L, Tan C K, et al. Journal of Geotechnical and Geoenvi-ronmental Engineering, 2014, 140(5), 04014006.
8 Okwadha G D O, Li J. Chemosphere, 2010, 81(9), 1143.
9 Lauchnor E G, Topp D M, Parker A E, et al. Journal of Applied Microbiology, 2015, 118(6), 1321.
10 Chen L, Qian C X, Wang R X, et al. Acta Chimica Sinica, 2007, (19), 2133 (in Chinese).
成亮, 钱春香, 王瑞兴, 等. 化学学报, 2007, (19), 2133.
11 Sun X, Miao L, Tong T, et al. Acta Geotechnica, 2019, 14(3), 627.
12 Cheng L, Shanin M A, Mujah D. Journal of Geotechnical and Geoenvi-ronmental Engineering, 2016, 143(1), 04016083.
13 Cui M J, Zheng J J, Lai H J. Rock and Soil Mechanics, 2016, 37(S2), 397 (in Chinese).
崔明娟, 郑俊杰, 赖汉江. 岩土力学, 2016, 37(S2), 397.
14 Alimova A, Katz A, Steiner N, et al. Clays and Clay Minerals, 2009, 57(2), 205.
15 Cheng L, Shahin M A, Mujah D. Journal of Geotechnical and Geoenvi-ronmental Engineering, 2016, 143(1), 04016083.
16 Li C J, Wei T Y, Ji B, et al. Environmental Science & Technology, 2018, 41(3), 30 (in Chinese).
李成杰, 魏桃员, 季斌, 等. 环境科学与技术, 2018, 41(3), 30.
17 Bang S C, Min S H, Bang S S. International Journal of Geo-Engineering, 2011, 3(2), 186.
18 Oliveira V J P, Freitas D L, Carmona F S P J. Journal of Materials in Civil Engineering, 2016, 29(4), 04016263.
19 Gao Y F, Yang E J, He J. Henan Science, 2019, 37(1), 144, (in Chinese).
高玉峰, 杨恩杰, 何稼. 河南科学, 2019, 37(1), 144.
20 Ming D G, Qiu M X, Yin L J, et al. Yellow River, 2020, 42(4), 85 (in Chinese).
明道贵, 邱明喜, 殷莉静, 等. 人民黄河, 2020, 42(4), 85.
21 Wang T, Zhong D S, Zhou M R, et al. Materials Reports, 2023, 37(S1), 163 (in Chinese).
王腾, 钟东生, 周茗如, 等. 材料导报, 2023, 37(S1), 163.
22 Okyay O T, Rodrigues F D. Journal of Microbiological Methods, 2013, 95(3), 324.
23 Swayamdipta B, Nandini D, Sushanta M, et al. Journal of Visualized Experiments: JoVE, 2016, 110, 53253.
24 Jonkers M H, Thijssen A, Muyzer G, et al. Ecological Engineering, 2008, 36(2), 230.
25 Chen X, Han Y X, Zhang G R, et al. Journal of Building Materials, 2018, 21(3), 484 (in Chinese).
陈歆, 韩依璇, 张国荣, 等. 建筑材料学报, 2018, 21(3), 484.
26 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for geotechnical testing method: GB/T 50123-2019, China Planning Press, China, 2020 (in Chinese).
中华人民共和国住房与城乡建设部. 土工试验方法标准: GB/T 50123-2019, 中国计划出版社, 2020.
27 Wang Y Q. Study on dust emission characteristics of PM10 and PM2. 5 in bare farmland soil based onwind tunnel experiment. Master's Thesis, Tianjin Normal University, China, 2019(in Chinese)
王雅倩, 基于风洞实验的裸露农田土壤PM10和PM2. 5起尘特征研究. 硕士学位论文, 天津师范大学. 2019.
28 Song H Q, Zhang K S, Piao S L, et al. Atmospheric Environment, 2016, 126, 117.
29 Jiang L, Xiao Y, Zheng H, et al. Chinese Geographical Science, 2016, 26(2), 155.
30 Qabany A, Soga K. Géotechnique, 2013(4), 331.
31 Cui M, Fu X, Zheng J J, et al. Rock and Soil Mechanics, 2022, 43(11), 3027(in Chinese).
崔猛, 符晓, 郑俊杰, 等. 岩土力学, 2022, 43(11), 3027.
32 Liu G, Chang W, Xing W, et al. Geotechnical Investigation & Surveying, 2024, 52(12), 33(in Chinese).
刘刚, 常伟, 邢玮, 等. 工程勘察, 2024, 52(12), 33.
33 Soon N W, Lee L M, Khun T C, et al. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(5), 1.
34 Wang Y, Soga K, Dejong J T, et al. Géotechnique, 2019, 69(12), 1086.
[1] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[2] 王竟宇, 詹良通, 梁腾, 陈萍. 铸余渣固化工程渣土再生路基填料的性能与机制[J]. 材料导报, 2025, 39(5): 24020088-7.
[3] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[4] 任金翠, 吴义胜, 李欣沂, 唐艳姿. 一维HfC、ZrC、TaC的制备与应用[J]. 材料导报, 2025, 39(2): 23100152-10.
[5] 田小革, 李光耀, 高凯, 吴清浩, 黄思丹, 谢振. 硅烷偶联剂接枝活化废胶粉与沥青相容性及微观机理研究[J]. 材料导报, 2025, 39(18): 24070126-10.
[6] 齐亚兵, 王康康, 吴子波, 党方方. 微反应器在药物、载药递释材料和诊疗药物制备领域应用的研究进展[J]. 材料导报, 2025, 39(16): 24070168-13.
[7] 凡涛涛, 韩松凯, 司春棣. 紫外老化对硫酸钙晶须改性沥青疲劳性能的影响[J]. 材料导报, 2025, 39(11): 24040015-6.
[8] 齐顺顺, 王文健, 汪渊, 丁昊昊. 贝氏体钢轨磨损与接触疲劳行为的研究进展[J]. 材料导报, 2025, 39(1): 23090020-11.
[9] 刘世盟, 郭乃胜, 崔世超, 褚召阳, 赵近川. PDA/GO/PUF聚氨酯泡沫的力学与隔热性能及其微观机理[J]. 材料导报, 2024, 38(22): 23110080-9.
[10] 田小革, 李光耀, 陈功, 姚世林, 黄雪梅, 王俊杰, 陆劲州. TPU/Nano-ZnO复合改性沥青的性能研究及微观机制[J]. 材料导报, 2024, 38(16): 23050071-10.
[11] 赵华, 唐杰, 刘伟男. 碳化硅沥青胶浆自愈合行为研究及最佳掺量的确定[J]. 材料导报, 2024, 38(14): 23040058-12.
[12] 张洋洋, 张群力, 赵庆新, 吴凯, 常钧. 硫铝酸盐水泥水化产物-铝凝胶的研究进展[J]. 材料导报, 2024, 38(14): 23050153-9.
[13] 宋杰, 丁红蕾, 潘卫国, 张凯, 马骏驰, 张子沂. 二氧化锰基催化剂催化氧化甲苯的进展[J]. 材料导报, 2024, 38(13): 23030015-11.
[14] 王振军, 阎凤凤, 张含笑, 梁晴陨. 乳化沥青与RAP再生界面融合特征研究进展[J]. 材料导报, 2023, 37(7): 21030199-10.
[15] 鲁浩, 杨强, 孔赟. 金属有机框架材料对水体中有机污染物的吸附去除及氧化降解研究进展[J]. 材料导报, 2023, 37(4): 22060239-13.
[1] ZHANG Kaiming, LI Chunyu, SUN Hongru, HAN Zijian, ZHANG Xu, WEI Shuang,LU Xuge, DONG Wei, SHEN Ding, YANG Shaobin. First-principles Study of Boron-doped Graphene as Anode Material for Lithium-ion Batteries[J]. Materials Reports, 2025, 39(24): 24120040 -9 .
[2] LIAO Muzi, HE Liang, WANG Baokai, NIU Mengyang, SUN Chang, YUAN Yunqi,CAO Wenbin, WANG Qi. Influence of Dispersants on the Dispersion Performance of SiO2 Aerogel Powder in Aqueous Systems[J]. Materials Reports, 2025, 39(24): 24120191 -6 .
[3] . [J]. Materials Reports, 2026, 40(1): 0 .
[4] WU Yue. Applications of Plasma in Preparation and Modification of Cathode Materials for Metal-ion Batteries[J]. Materials Reports, 2026, 40(1): 24120198 -12 .
[5] LI Chaolei. Study on Radial Pores Structure of Microporous Layer with High Mass Transportation in Proton Exchange Membrane Fuel Cells[J]. Materials Reports, 2026, 40(1): 25010096 -5 .
[6] YANG Han. MOPSO-based Optimization Design of the Structural Parameters of Π-type Air-cooled BTMS[J]. Materials Reports, 2026, 40(1): 24090090 -9 .
[7] WANG Shijun, YANG Ming, WANG Wenjia. Application of MXene-based Composites in Aviation Field[J]. Materials Reports, 2026, 40(1): 25010040 -9 .
[8] CHEN Wei, HOU Sifan, WANG Wei, FAN Jinpeng. Synthesis and Properties of High-temperature-resistant Alumina-based Nanorod Aerogels[J]. Materials Reports, 2026, 40(1): 25020183 -9 .
[9] HU Pengfei, LIN Jie, YANG Jiaxin, JIANG Yun, XIE Chen. A Review on the Regulation of Transition Metal Carbide Ceramics Properties by Carbon Vacancies[J]. Materials Reports, 2026, 40(1): 24120017 -11 .
[10] WANG Wei. Characteristics of Force Chain Composition in Asphalt Mixture Under Compression[J]. Materials Reports, 2026, 40(1): 24030044 -6 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed