| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| A Review on the Regulation of Transition Metal Carbide Ceramics Properties by Carbon Vacancies |
| HU Pengfei*, LIN Jie, YANG Jiaxin, JIANG Yun, XIE Chen
|
| Instrumental Analysis and Research Center, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China |
|
|
|
|
Abstract Carbon vacancy transition metal carbide ceramics, also known as non-stoichiometric transition metal carbide ceramics, is a type of ceramic material derived from transition metal carbides. The preparation of this material involves precise controlling of the internal carbon content, intentionally reducing the ratio of carbon to the ideal stoichiometric proportion, which induces the formation of carbon vacancies. The formation of these vacancies has a significant impact on the physical and chemical properties of the ceramics. Compared to traditional ceramics, this type of material mainly uses binary transition metal carbides or high-entropy carbide ceramics as the base. The introduction of carbon vacancies significantly affects several material properties, including enhanced toughness and plasticity, reduced thermal conductivity, and improved density. In addition, the presence of carbon vacancies also plays a role in enhancing phase stability, reducing sintering temperatures, and improving oxidation resistance. In the field of functional materials, the introduction of carbon vacancies enhances the material's hydrogen storage and catalytic performance. Due to their outstanding structural and functional characteristics, these materials exhibit great potential and prospects in aerospace, nuclear industries, and industrial manufacturing fields that require high-temperature resistance, oxidation resistance, and excellent mechanical properties.
|
|
Published: 10 January 2026
Online: 2026-01-09
|
|
|
|
|
1 Rost C M, Borman T, Hossain M D, et al. Acta Materialia, 2020, 196, 231. 2 Pang J, Sun J, Zheng M, et al. Applied Catalysis B: Environmental, 2019, 254, 510. 3 Kaner R B, Gilman J J, Tolbert S H. Science, 2005, 308(5726), 1268. 4 Pierson H O. Handbook of refractory carbides and nitrides, Noyes publication, New York, USA, 1996, pp. 16. 5 Fahrenholtz W G, Hilmas G E. Scripta Materialia, 2016, 94, 6. 6 Weinberger C R, Thompson G B. Journal of the American Ceramic Society, 2018, 101(10), 4401. 7 Guo S Q. Journal of the European Ceramic Society, 2009, 29(6), 995. 8 Li M X. Study on the synthesis of nano-carbide materials by sol-gel precursor method. Master's Thesis, Xiangtan University, China, 2008 (in Chinese). 黎茂祥. 溶胶-凝胶先驱体法制备纳米碳化物材料研究. 硕士学位论文, 湘潭大学, 2008. 9 Jin Z H. Gao J Q, Qiao G J. Engineering ceramic materials, Xi'an Jiaotong University Press, China, 2000, pp. 26 (in Chinese). 金志浩, 高积强, 乔冠军. 工程陶瓷材料, 西安交通大学出版社, 2000, pp. 26. 10 Qiao L, Wang M, Liu M, et al. Ceramics International, 2015, 41(9, Part A), 11341. 11 Oh H S, Kim S J, Odbadrakh K, et al. Nature Communications, 2019, 10, 1. 12 Gild J, Zhang Y, Harrington T, et al. Scientific Reports, 2016, 6(1), 37946. 13 Harrington T J, Gild J, Sarker P, et al. Acta Materialia, 2018, 166, 280. 14 Adbm, Bonsa. Acta Materialia, 2017, 122, 448. 15 Sarker P, Harrington T, Toher C, et al. Nature Communications, 2018, 9(1), 4980. 16 Chen L, Wang K, Su W T, et al. Journal of Inorganic Materials, 2020, 35(7), 748 (in Chinese). 陈磊, 王恺, 苏文韬, 等. 无机材料学报, 2020, 35(7), 748. 17 Rost C M, Sachet E, Borman T, et al. Nature Communications, 2015, 6, 8485. 18 Christina M R. Entropy-stabilized oxides: explorations of a novel class of multicomponent materials. Ph. D. Thesis, North Carolina State University, USA, 2016. 19 Xue L Y, Loic C, Bai L Y. Journal of the American Ceramic Society, 2018, 101(10), 4486. 20 Ye B, Wen T, Nguyen M C, et al. Acta Materialia, 2019, 170, 15. 21 Tan H, Yong Q C, Chen L, et al. Journal of Alloys and Compounds, 2019, 816, 152523. 22 Wang M J, Yichen R. Scripta Materialia, 2021, 193(1), 86. 23 Luo S C, Guo W M, Fang Z L, et al. Journal of the European Ceramic Society, 2022, 42(2), 336. 24 Castle E, Csanádi T, Grasso S, et al. Scientific Reports, 2018, 8(1), 8609. 25 Han X, Girman V, Sedlak R, et al. Journal of the Europrean Ceramic Society, 2020, 40(7), 2709. 26 Sun Y, Xiang H, Dai F Z, et al. Journal of Advanced Ceramics, 2021, 10(3), 596. 27 Zhang B H, Wang Y W, Yin J, et al. Journal of Materials Science and Technology, 2023, 164, 205. 28 He Y, Peng C, Xin S, et al. Journal of Materials Science, 2020, 55(16), 6754. 29 Malinovskis P, Fritze S, Riekehr L, et al. Materials and Design, 2018, 149, 51. 30 Zhang Y, Liu B, Wang J, et al. Acta Materialia, 2016, 111, 232. 31 Kostenko M G, Li J, Zeng Z, et al. Journal of Alloys and Compounds, 2022, 891, 162063. 32 Zhao S. Journal of the American Ceramic Society, 2021, 104(4), 1874. 33 Zhong Y, Sabarou H, Yan X, et al. Materials and Design, 2019, 182, 108060. 34 Hu W, Xiang J, Zhang Y, et al. Journal of Materials Research, 2012, 27(9), 1230. 35 Meng H, Chu Y. Journal of the American Ceramic Society, 2022, 105(9), 5835. 36 Li J, Zhou Y, Su Y, et al. Journal of Advanced Ceramics, 2023, 12(2), 242. 37 Wang Y, Csanádi T, Fogarassy Z, et al. Journal of the European Ceramic Society, 2022, 42(13), 5273. 38 Biesuz M, Saunders T G, Veverka J, et al. Scripta Materialia, 2021, 203, 114091. 39 Liu D, Hou Y, Meng J, et al. Journal of the European Ceramic Society, 2022, 42(13), 5262. 40 Song J, Chen G, Xiang H, et al. Journal of Materials Science and Technology, 2022, 121, 181. 41 Zhang W, Chen L, Lu W, et al. Journal of the European Ceramic Society, 2022, 42(14), 6347. 42 Hossain M D, Borman T, Kumar A, et al. Acta Materialia, 2021, 215, 117051. 43 Vasanthakumar K, Bakshi S R. Ceramics International, 2018, 44(1), 484. 44 Li J, Chen S, Fan H, et al. Journal of the American Ceramic Society, 2024, 107(4), 2750. 45 Luo X, Yang X, Weng Y, et al. Journal of Alloys and Compounds, 2023, 965, 171484. 46 Wen Z, Tang Z, Liu Y, et al. Advanced Materials, 2024, 36(14), 2311870. 47 Qin Y, Wei X F, Liu J X, et al. Advances in Applied Ceramics, 2023, 122(5-8), 259. 48 Zhou Y, Fahrenholtz W G, Graham J, et al. Journal of Materials Science and Technology, 2021, 82, 105. 49 Chen H, Zhao Z, Xiang H, et al. Journal of Materials Science and Technology, 2020, 48, 57. 50 Chen H, Xiang H, Dai F Z, et al. Journal of Materials Science and Technology, 2019, 35(8), 1700. 51 Chen L, Zhang W, Lu W, et al. Journal of Advanced Ceramics, 2023, 12(1), 49. 52 Liu B, Zhao J, Liu Y, et al. Journal of Materials Science and Technology, 2021, 88, 143. 53 Dai F Z, Wen B, Sun Y, et al. Journal of Materials Science and Technology, 2020, 43, 168. 54 Rempel A A, Würschum R, Schaefer H E. Physical Review B, 2000, 61(9), 5945. 55 Ding H, Fan X, Chu K, et al. Journal of the European Ceramic Society, 2014, 34(7), 1893. 56 Yu X X, Thompson G B, Weinberger C R. Journal of the European Ceramic Society, 2015, 35(1), 95. 57 Ouyang Y, Xiong M, Lin K, et al. Calphad, 2024, 85, 102680. 58 Kostenko M G, Gusev A I, Lukoyanov A V. International Journal of Refractory Metals and Hard Materials, 2023, 110, 106005. 59 Xiang J, Hu W, Liu S, et al. Materials Chemistry and Physics, 2011, 130(1), 352. 60 Lin Y, Chong X, Gan M, et al. Ceramics International, 2023, 49(13), 22518. 61 Moisy-Maurice V, Lorenzelli N, De Novion C H, et al. Acta Metallurgica, 1982, 30(9), 1769. 62 Dang F Z. Preparation and properties of high entropy transition metal carbides. Master's Thesis, Shaanxi University of Science and Technology, China, 2022 (in Chinese). 党锋珍. 高熵过渡金属碳化物的制备及其性能研究. 硕士学位论文, 陕西科技大学, 2022. 63 Zhang C, Gupta A, Seal S, et al. Journal of the American Ceramic Society, 2017, 100(5), 1853. 64 Jung J, Kang S. Scripta Materialia, 2007, 56(7), 561. 65 Kurbatkina V V, Patsera E I, Levashov E A, et al. Advanced Engineering Materials, 2017, 20(8), 1701075. 66 Cabrero J, Audubert F, Pailler R. Journal of the European Ceramic Society, 2011, 31(3), 313. 67 Zhang X, Hilmas G E, Fahrenholtz W G, et al. Journal of the American Ceramic Society, 2010, 90(2), 393. 68 Roeder E, Hornstra J. Journal of the American Ceramic Society, 1968, 51(4), 224. 69 Gui K X, Liu F Y, Zhu F W, et al. Journal of Synthetic Crystals, 2018, 47(8), 6(in Chinese). 桂凯旋, 刘方瑜, 祝夫文, 等. 人工晶体学报, 2018, 47(8), 6. 70 Shannon R D. Acta Crystallographica Section A, 1976, 32(5), 751. 71 Mann J B, Meek T L, Knight E T, et al. Journal of the American Chemical Society, 2000, 122(21), 5132. 72 Peng C, Tang H, He Y, et al. Journal of Materials Science and Technology, 2020, 51, 161. 73 Razumovskiy V I, Ruban A V, Odqvist J, et al. Calphad, 2014, 46, 87. 74 Lin G, Liu J, Qin Y, et al. Journal of the American Ceramic Society, 2022, 105(4), 2392. 75 Vasanthakumar K, Revathi G, Ariharan S, et al. Journal of the European Ceramic Society, 2021, 41(13), 6756. 76 Wei B, Chen L, Wang Y, et al. Journal of the European Ceramic Society, 2018, 38(2), 411. 77 Wang X G, Guo W M, Kan Y M, et al. Journal of the European Ceramic Society, 2011, 31(6), 1103. 78 Zhang W, Li K, Chen L, et al. Journal of the European Ceramic Society, 2024, 44(3), 1396. 79 Balasubramanian K, Khare S, Gall D. Acta Materialia, 2018, 159, 77. 80 Niu H, Chen X Q, Liu P, et al. Scientific Reports, 2012, 2(2), 718. 81 Mei A B, Kindlund H, Broitman E, et al. Acta Materialia, 2020, 192, 78. 82 Thompson R P, Clegg W J. Current Opinion in Solid State and Materials Science, 2018, 22(3), 100. 83 Li J, Zhang Q, Chen S, et al. Materials and Design, 2023, 226, 111680. 84 Porz L, Klomp A J, Fang X, et al. Materials Horizons, 2021, 8(5), 1528. 85 Tan Y, Liao W, Teng Z, et al. Journal of the American Ceramic Society, 2024, 107(4), 2565. 86 Li X, Xiang J, Hu W. Materials Characterization, 2014, 90, 94. 87 Hu W, Liu S, Wen B, et al. Journal of Applied Crystallography, 2013, 46(1), 43. 88 Gu Y, Xiang Y, Srolovitz D J, et al. Scripta Materialia, 2018, 155, 155. 89 McFadden G B, Boettinger W J, Mishin Y. Acta Materialia, 2020, 185, 66. 90 Gusev A I, Zyryanova A N. Physica Status Solidi, 2000, 177(2), 419. 91 Riedl H, Glechner T, Wojcik T, et al. Scripta Materialia, 2018, 149, 150. 92 Sangiovanni D G, Tasnádi F, Harrington T, et al. Materials and Design, 2021, 204, 109634. 93 Jordan R E. Handbook of refractory compounds, Plenum Press, New York, 1980, pp. 8. 94 Radosevich L G, Williams W S. Journal of the American Ceramic Society, 1970, 53(1), 30. 95 Zhou Y, Fahrenholtz W G, Graham J, et al. Journal of the American Ceramic Society, 2021, 104(9), 4708. 96 Li J, Fan H, Zhang Q, et al. Ceramics International, 2024, 50(6), 9926. 97 Kuriakose N, Mohan T A, Ghosh P. Surface Science, 2021, 706, 121798. 98 Stotts J C, Salehin R, Bakst I N, et al. International Journal of Hydrogen Energy, 2024, 50, 5123. 99 Gringoz A, Glandut N, Valette S. Electrochemistry Communications, 2009, 11(10), 2044. 100 Wei B, Wang Y, Zhang H, et al. Materials Letters, 2018, 228, 254. |
|
|
|