| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Research Progress on Durability Evaluation Indicators and On-site Testing Methods for In-service Concrete in High-speed Railways |
| ZHANG Dachuan1,2, YI Zhonglai1,2,*, LI Huajian1,2, YANG Zhiqiang1,2
|
1 Railway Engineering Research Institute, China Academy of Railway Science Corporation Limited, Beijing 100081, China 2 State Key Laboratory of High Speed Railway Track System, China Academy of Railway Science Corporation Limited, Beijing 100081, China |
|
|
|
|
Abstract The current standards provide clear durability requirements for high-speed railway concrete during the material design, repair and protection phases. However, there is a lack of systematic technical standards for durability evaluation during the service phase. Evaluating durability during the service phase not only validates the effectiveness of durability design standards, but also guides the revision of durability standards in the repair and protection phase, which is crucial for achieving life-cycle durability evaluation. This paper systematically and comprehensively determines the durability testing indicators for in-service concrete in high-speed railways, based on the service life calculation model of the ultimate limit state for concrete structures. Furthermore, a comprehensive and systematic determination of durability testing indicators for in-service concrete in high-speed railways is conducted, along with an in-depth summary of on-site testing methods for each indicator. By elaborating on the detection principles, analyzing influencing factors, applicability, advantages, limitations, and key precautions during testing, this pceper identifies the optimal on-site testing methods for assessing concrete carbonation depth, cover thickness, strength, surface spalling, permeability, as well as rebar diameter and corrosion degree. The findings provide a practical reference for the development of durability assessment standards for in-service high-speed railway concrete.
|
|
Published: 10 January 2026
Online: 2026-01-09
|
|
|
|
|
1 Ministry of Railways of the People's Republic of China. Code for durability design on concrete structure of railway TB 10005-2010, China Railway publishing House, China, 2011 (in Chinese). 中华人民共和国铁道部. 铁路混凝土结构耐久性设计规范. TB 10005-2010, 中国铁道出版社, 2011. 2 National Railway Administration of the People's Republic of China. Concrete for railway construction TB/T 3275-2018, China Railway Publishing House, 2019 (in Chinese). 国家铁路局. 铁路混凝土 TB/T 3275-2018, 中国铁道出版社, 2019. 3 National Railway Administration of the People's Republic of China. Standard for acceptance of concrete works in railway TB 10424-2018, China Railway publishing House, China, 2019(in Chinese). 国家铁路局. 铁路混凝土工程施工质量验收标准 TB 10424-2018, 中国铁道出版社, 2019. 4 National Railway Administration of the People's Republic of China. Technical specification for quality inspection of in-situ concrete in railway engineering TB 10433-2023, China Railway publishing House, China, 2023 (in Chinese). 国家铁路局. 铁路工程混凝土实体质量检测技术规程 TB 10433-2023, 中国铁道出版社, 2023. 5 Hu J, Tang K, Ji P. Quality Test, 2023, 41(5), 11 (in Chinese). 胡杰, 唐坤, 纪鹏远. 工程质量, 2023, 41(5), 11. 6 Hao T, Hui Y, Mei M, et al. Journal of Southeast University (National Science Editon), 2006(S2), 49(in Chinese). 郝挺宇, 惠云玲, 梅名虎, 等. 东南大学学报(自然科学版), 2006(S2), 49. 7 Wang J, Li H, Ma C, et al. Railway Sciences, 2024, 3(1), 59. 8 Ministry of Housing and Urban-rural Development of the People's Republic of China. Standard for design of concrete structure durability GB/T 50476-2019, China Architecture & Building Press, China, 2019 (in Chinese). 中华人民共和国住房和城乡建设部. 混凝土结构耐久性设计标准 GB/T 50476-2019, 建筑工业出版社, 2019. 9 Ministry of Water Resources of the People's Republic of China. Specification for evaluating durability of hydraulic concrete structures SL 775-2018, China Water & Power Press, China, 2019 (in Chinese). 中华人民共和国水利部. 水工混凝土结构耐久性评定规范. SL 775-2018, 水利水电出版社, 2019. 10 Ministry of Housing and Urban-rural Development of the People's Republic of China. Standard for durability assessment of existing concrete structures GB/T 511355-2019, China Architecture & Building Press, China, 2019 (in Chinese). 中华人民共和国住房和城乡建设部. 既有混凝土结构耐久性评定标准 GB/T 511355-2019, 建筑工业出版社, 2019. 11 Jones M R, Dhir R K, Newlands M D. Materials & Structures, 2000, 33(226), 135. 12 Wang X, Val D V, Zheng L, et al. Construction and Building Materials, 2020, 243, 118259. 13 Wang X, Val D V, Zheng L, et al. Construction and Building Materials, 2018, 164, 12. 14 Wang X, Tu J. Journal of Harbin Engineering University, 2023, 44 (8), 1426 (in Chinese). 王小惠, 涂静婷. 哈尔滨工程大学学报, 2023, 44 (8), 1426. 15 Shi X Y. Damage analysis and theoretical model for carbonation depth prediction of concrete under the combined action of load and carbonation. Ph.D.Thesis, China Building Materials Academy, China, 2023 (in Chinese). 史鑫宇. 荷载与碳化作用下的混凝土损伤分析及碳化深度预测理论模型. 博士学位论文, 中国建筑材料科学研究总院, 2023. 16 Tian Y, Zhou Z, Li N, et al. Journal of Chang'an University (Natural Science Edition), 2024, 44(1), 68 (in Chinese). 田叶青, 周志军, 李楠, 等. 长安大学学报(自然科学版), 2024, 44(1), 68. 17 Mitchell M R, Link R E, Yu M, et al. Journal of Testing and Evaluation, 2010, 38, 102382. 18 Turcry P, Oksri-Nelfia L, Younsi A, et al. Cement and Concrete Research, 2014, 57, 70. 19 Chinchón-Payá S, Andrade C, Chinchón S. Cement and Concrete Research, 2016, 82, 87. 20 Vogler N, Lindemann M, Drabetzki P, et al. Cement and Concrete Composites, 2020, 109, 103565. 21 Yu M Y, Lee J Y, Chung C W. Journal of Testing and Evaluation, 2010, 38, 5, 534. 22 Villain G, Platret G. ACI Materials Journal, 2006, 103(4), 265. 23 Villain G, Thiery M. NDT & E International, 2006, 39(4), 328. 24 Morandeau A, Thiéry M, Dangla P. Cement and Concrete Research, 2014, 56, 153. 25 Zhang K, Yio M, Wang H, et al. Cement and Concrete Research, 2024, 175, 107358. 26 Shagñay S, Bautista A, Velasco F, et al. Boletín de la Sociedad Española de Cerámica y Vidrio, 2023, 62(5), 428. 27 Yue Y, Wang J, Basheer P, et al. Sensors and Actuators B:Chemical, 2018, 257, 635. 28 He X, Zhang C, Shang Y. Journal of Shijiazhuang Institute of Railway Technology, 2022, 21(1), 54 (in Chinese). 何小军, 张成维, 尚艳亮. 石家庄铁路职业技术学院学报, 2022, 21(1), 54. 29 Ren Z. Investigation of carbonation cracking behavior and carbonation mechanism of concrete. Master's Thesis, Shenzhen University, China, 2021 (in Chinese). 任志丽. 混凝土碳化开裂行为及碳化机理研究. 硕士学位论文, 深圳大学, 2021. 30 Dinh K, Gucunski N, Kim J, et al. NDT & E International, 2016, 83, 48. 31 Rasol M, Pérez-Gracia V, Solla M. NDT & E International, 2020, 115, 102293. 32 Liu J, Zollinger D, Lytton R. Journal of the Transportation Research Board, 2008, 2087(1), 68. 33 Hugenschmidt J, Mastrangelo R. Cement and Concrete Composites, 2006, 28(4), 384. 34 Dinh K, Gucunski N, Duong T. Automation in Construction, 2018, 89, 292. 35 Stryk J, Matula R, Pospisil K. Journal of Applied Geophysics, 2013, 97, 11. 36 Łukasz S, Łukasz K, GrzegorzŚ. Procedia Engineering, 2016, 156, 443. 37 Tarussov A, Vandry M, Haza A. Construction and Building Materials, 2013, 38, 1246. 38 Kuchipudi S, Ghosh D, Gupta H. Automation in Construction, 2022, 140, 104378. 39 Faris N, Zayed T, Abdelkader E, et al. Automation in Construction, 2023, 156, 105130. 40 Leucci G. Journal of Advanced Concrete Technology, 2012, 10, 411. 41 Malhotra V, Carino N. Handbook on nondestructive testing of concrete, CRC Press, USA, 2003, pp. 245. 42 Lu J. Development of rebar detector based on magnetic measurement. Master's Thesis, Harbin Institute of Technology, China, 2017 (in Chinese). 鲁健捷. 基于磁测量的钢筋探测仪研制. 硕士学位论文, 哈尔滨工业大学, 2017. 43 Ripka P, Lewis A. Journal of Electrical Engineering, 2006, 57(8/s), 175. 44 Alabi D, Voss M, Ferraro C, et al. Construction and Building Materials, 2023, 374, 130873. 45 Li Z, Jin Z, Xu X, et al. Construction and Building Materials, 2020, 245, 118472. 46 Ying W. Study on non-destructive inspection techniques of steel bars in reinforced concrete. Master's Thesis, Zhejiang University, China, 2011 (in Chinese). 应文武. 混凝土结构中钢筋无损检测技术的研究. 硕士学位论文, 浙江大学, 2011. 47 吴晓明, 赵晖, 刘冠国, 等. 江苏省公路学会优秀论文集(2006-2008), 江苏省交通科学研究院, 2009, pp.8. 48 Jia X, Xie R. Housing Science, 2010, 30(8), 22 (in Chinese). 贾鑫, 谢仁明. 住宅科技, 2010, 30(8), 22. 49 Jiang G, Xu Y. Construction Machinery, 2023(12), 59 (in Chinese). 江根明, 许野. 建筑机械, 2023(12), 59. 50 Alani A, Aboutalebi M, Kilic G. Journal of Applied Geophysics, 2013, 97, 45. 51 Varnavina A, Khamzin A, Sneed L, et al. Construction and Building Materials, 2015, 99, 26. 52 Feng S. Bayesian assessment of the in-service durability status of PC beams based on corrosion potential. Master's Thesis, Chongqing Jiaotong University, China, 2023 (in Chinese). 冯升阳. 基于锈蚀电位的在役PC梁耐久性状态Bayesian评估. 硕士学位论文, 重庆交通大学, 2023. 53 The Technical Liaision Committee. Concrete, 2000, 7, 34. 54 Pour-Ghaz M, Isgor O, Ghods P. Journal of Materials in Civil Engineering, 2009, 21(9), 467. 55 Stern M, Geary A. Journal of the Electrochemical Society, 1957, 104(1), 56. 56 Wu Z. Study on steel corrosion and service life of high strength coral aggregate seawater concrete structures. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2020 (in Chinese). 吴彰钰. 高强全珊瑚海水混凝土结构的钢筋锈蚀与服役寿命研究. 硕士学位论文, 南京航空航天大学, 2020. 57 Li S, Kim Y, Jung S, et al. Sensors and Actuators B, 2007, 120, 368. 58 Živica V. Construction and Building Materials, 2000, 14(6-7), 351. 59 Klysz G, Balayssac J. Cement and Concrete Research, 2007, 37(8), 1164. 60 Laurens S, Balayssac J, Rhazi J. Materials and Structures, 2005, 38, 827. 61 Dérobert X, Iaquinta J, Klysz G, et al. NDT & E International, 2008, 41(1), 44. 62 Laurens S. Materials and Structures, 2002, 35(248), 198. 63 Senin S, Hamid R. Construction and Building Materials, 2016, 106, 659. 64 Hugenschmidt J, Loser R. Materials & Structures, 2008, 41(4), 785. 65 Tesic K, Baricevic A, Serdar M, et al. Automation in Construction, 2022, 143, 104548. 66 Kaplanvural İ, Özkap K, Pekşen E. Construction and Building Materials, 2021, 297, 123783. 67 Belli K, Wadia-Fascetti S, Rappaport C. Computer-Aided Civil and Infrastructure Engineering, 2007, 23(1), 3. 68 Faris N, Zayed T, Abdelkader E, et al. Automation in Construction, 2023, 156, 105130. 69 Han X, Wang P, Cui D, et al. Measurement, 2023, 209, 112526. 70 Zhang J, Liu C, Sun M, et al. Construction and Building Materials, 2017, 135, 68. 71 Fu C, Huang J, Dong Z, et al. Sensors and Actuators A:Physical, 2020, 315, 112371. 72 Li Z, Jin Z, Gao Y. Cement and Concrete Composites, 2020, 113, 103730. 73 Robles K, Gucunski N, Kee S. Construction and Building Materials, 2024, 411, 134512. 74 Icenogle P J, Rupnow T D. Transportation Research Record, 2012, 2290(1), 38. 75 Rupnow Tyson, Icenogle Patrick. Transportation Research Record, 2012, 2290(1), 30. 76 Cheytani M, Chan S L I. Case Studies in Construction Materials, 2021, 15, e00663. 77 Yang K, Basheer P, Bai Y, et al. NDT & E International, 2014, 64, 30. 78 Xu Z. Concrete resistivity monitorig and resistivity-based concrete performance characterization. Master's Thesis, Shenzhen University, China, 2018 (in Chinese). 徐宗南. 混凝土电阻率监测和基于电阻率的混凝土性能表征. 硕士学位论文, 深圳大学, 2018. 79 Weydert R, Gehlen C. Durability of Building Materials and Components, 1999, 8, 409. 80 Polder R. Construction and Building Materials, 2001, 15(2-3), 125. 81 Yu B, Liu J, Chen Z. Construction and Building Materials, 2017, 138, 101. 82 Hou L. Research for testing curve of detecting the concrete compressive strength by rebound method in henan area. Master's Thesis, Zhengzhou University, China, 2017 (in Chinese). 侯力凯. 河南地区回弹法检测混凝土强度测强曲线试验研究. 硕士学位论文, 郑州大学, 2017. 83 Sykora M, Diamantidis D, Holicky M, et al. Construction and Building Materials, 2018, 193, 196. 84 Kang X, Liu X, Feng X, et al. China Concrete and Cement Products, 2021(10), 16. 康希佞, 刘杏娟, 冯晓爽, 等. 混凝土与水泥制品, 2021(10), 16. 85 Trtnik G, Kavi F, Turk G. Ultrasonics, 2009, 49(1), 53. 86 Kang L. Experimental study of mix proportion and nondestructive test technology of high performance concrete. Master's Thesis, Shangdong University, China, 2007 (in Chinese). 康丽. 高性能混凝土配合比及无损检测技术的试验研究. 硕士学位论文, 山东大学, 2007. 87 Xiong J. Research for the main factors and testing curve of detecting the concrete compressive strength by rebound method. Master's Thesis, South China University of Technology, China, 2015 (in Chinese). 熊静. 回弹法评定混凝土抗压强度的主要影响因素及测强曲线的研究. 硕士学位论文, 华南理工大学, 2015. 88 Liu Q. Ultrasonic rebound method for testing the strength of recycled concrete. Master's Thesis, Hebei Agricultural University, China, 2019 (in Chinese). 刘倩. 超声回弹综合法检测再生混凝土强度试验研究. 硕士学位论文, 河北农业大学, 2019. 89 Xu Q. Research on nondestructive testing and machine learning prediction model of concrete strength for underwater structure. Master's Thesis, Fuzhou University, China, 2020 (in Chinese). 徐青青. 水下结构的混凝土强度无损检测和机器学习预测模型研究. 硕士学位论文, 福州大学, 2020. 90 Meng F. Apply research on concrete strength survey by ultrasonic-rebound combined method in Liaoning. Master's Thesis, Shenyang Jianzhu University, China, 2013 (in Chinese). 孟繁嵩. 辽宁地区超声回弹综合法检测混凝土强度应用研究. 硕士学位论文, 沈阳建筑大学, 2013. 91 Zhong Y, Wang P, Zhang B, et al. Journal of Building Engineering, 2023, 76, 107090. 92 Li S. Research on surface damage detection methods of concrete structures based on deep learning. Ph. D. Thesis, Dalian University of Technology, China, 2020 (in Chinese). 李生元. 基于深度学习的混凝土结构表面损伤检测方法研究. 博士学位论文, 大连理工大学, 2020. 93 Moses C, Robinson D, Barlow J. Earth-Science Reviews, 2014, 135, 141. 94 Fabbri S, Giambastiani B, Sistilli F, et al. Geomorphology, 2017, 295, 436. 95 Telling J, Lyda A, Hartzell P, et al. Earth-Science Reviews, 2017, 169, 35. 96 Zhang M. Study on terrestrial laser scanning for the pavement roughness inspection. Master's Thesis, China University of Mining & Technology, China, 2019 (in Chinese). 张梦虹. 地面三维激光扫描应用于路面平整度检测的研究. 硕士学位论文, 中国矿业大学, 2019. 97 Li D, Liu J, Feng L, et al. Measurement, 2020, 154, 107436. 98 Tian L. Research on evaluation method of measurement accuracy of hand-held laser scanner. Master's Thesis, Wuhan University, China, 2020 (in Chinese). 田柳. 手持激光扫描仪测量精度评定方法研究. 硕士学位论文, 武汉大学, 2020. 99 Gao Z. Characterization and mechanism of frost damage of restrained concrete under single-side salt freezing and thawing. Ph. D. Thesis, China Building Materials Academy, China, 2023 (in Chinese). 高志浩. 单面盐冻作用下约束态混凝土冻融损伤的表征及机理. 博士学位论文, 中国建筑材料科学研究总院, 2023. 100 Gao Z, Wang L, Wang Z, et al. Journal of Building Engineering, 2023, 76, 107051. 101 Erkal B, Hajjar J. Automation in Construction, 2017, 83, 285. 102 Multon S, Verdier J, Villain G, et al. Measurement, 2022, 196, 111204. 103 Kewalramani M, Khartabil A. Buildings, 2021, 11, 378. 104 Pilvar A, Ramezanianpour A, Rajaie H. Construction and Building Materials, 2015, 93, 790. 105 Schonlin K, Hilsdorf H. In:Katherine and Bryant Mather International Conference. USA, 1987. 106 Smith A. Concrete Construction, 1990, 35(9), 794. 107 Kresse P. Betonwerk+ Fertigteil-Technik, 1990, 56(2), 72. 108 Torrent R. Experimental Materials and Structures, 1992, 25, 358. 109 Multon S, Verdier J, Cagnon H, et al. Cement and Concrete Research, 2024, 178, 107455. 110 Milla J, Cavalline T, Rupnow T, et al. Advances in Civil Engineering Materials, 2021, 10(1), 172. 111 Jia L. Effects of concrete surface treatments on permeability of the surface layer of concrete. Master's Thesis, Hunan University, China, 2013 (in Chinese). 贾路风. 混凝土表面处理对表层混凝土抗渗性能影响研究. 硕士学位论文, 湖南大学, 2013. 112 Abbas A, Carcasses M, Ollivier J. Materials and Structures, 1999, 32, 3. 113 Fares M, Fargier Y, Villain G, et al. NDT & E International, 2016, 79, 150. 114 Andrzej M, Marta M. Procedia Engineering, 2016, 153, 483. 115 Yang J, Dong Q, Chen X, et al. Measurement, 2024, 224, 113863. 116 Brustad T, Pedersen A, Bang B. Transportation Research Interdisciplinary Perspectives, 2020, 7, 100206. 117 Nishio S. Quarterly Report of RTRI, 2017, 58(1), 36. 118 Nguyen M, Nakarai K, Kai Y, et al. Construction and Building Materials, 2020, 231, 117144. 119 Nguyen M, Nakarai K, Kubori Y, et al. Construction and Building Materials, 2019, 201, 430. 120 Yang J. Experimental research on the structure and the in-situ test method for the permeability of cover concrete. Ph. D. Thesis, Tsinghua University, China, 2008 (in Chinese). 杨进波. 混凝土保护层结构与渗透性现场检测方法的研究. 博士学位论文, 清华大学, 2008. 121 Rupnow T, Icenogle P. Transportation Research Record, 2012, 2290(1), 30. 122 Noort R, Hunger M, Spiesz P. Construction and Building Materials, 2016, 115, 746. 123 Basheer P, Gilleece P, Long A, et al. Cement and Concrete Composites, 2002, 24, 437. 124 Déroberta X, Latasteb J, Balayssacc J P, et al. NDT & E International, 2017, 89, 19. 125 Kalogeropoulos A, Kruk J, Hugenschmidt J. NDT & E International, 2013, 57, 74. 126 Al-Mattarneh H. Corrosion Science, 2016, 105, 133. 127 Al-Mattarneh H. Subsurface Sensing Technologies and Applications, 2001, 2(4), 377. 128 Torres-Luque M, Bastidas-Arteaga E, Schoefs F, et al. Construction and Building Materials, 2014, 68, 68. 129 Falciai R, Mignani A, Vannini A. Sensors and Actuators B:Chemical, 2001, 74(1-3), 74. 130 Tang J, Wang J. Smart Materials and Structures, 2007, 16(3), 665. 131 Lam C, Mandamparambil R, Tong S, et al. IEEE Sensors Journal, 2009, 9(5), 525. 132 Li H, Li D, Song G. Engineering Structures, 2004, 26, 1647. 133 Tan X, Du J, Zhang Q, et al. Construction and Building Materials, 2024, 422, 135789. 134 Piątek B, Howiacki T, Kulpa M, et al. Measurement, 2023, 221, 113480. 135 Liu Y, Bao Y. Measurement, 2023, 211, 112629. 136 Bai H, Guo D, Wang W, et al. Journal of Building Engineering, 2022, 54, 104668. 137 Ramani V, Kuang K, et al. Construction and Building Materials, 2021, 276, 122129. 138 Zamarreño C R, Rivero P J, Hernaez M, et al. Intelligent coatings for corrosion control, Buttrworth-Heinemann Press, UK, 2015, pp.603. 139 Xu L, Shi S, Huang Y, et al. Optics & Laser Technology, 2024, 174, 110553. 140 Fan L, Bao Y. Cement and Concrete Composites, 2021, 120, 104029. 141 Ke X. Talanta, 2020, 211, 120734. 142 Atkins C, Scantlebury J, Nedwell P, et al. Cement and Concrete Research, 1996, 26(2), 319. 143 Mahram V, Abdollahi H, Karimvand S. Microchemical Journal, 2022, 183, 108054. |
|
|
|