| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| First-principles Study of Boron-doped Graphene as Anode Material for Lithium-ion Batteries |
| ZHANG Kaiming1, LI Chunyu1, SUN Hongru1, HAN Zijian1, ZHANG Xu2,*, WEI Shuang2,3,LU Xuge2, DONG Wei2, SHEN Ding2, YANG Shaobin2
|
1 Heilongjiang Longxing International Resources Development Company Limited, Harbin 150036, China 2 College of Materials Science & Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China 3 College of Mining, Liaoning Technical University, Fuxin 123000, Liaoning, China |
|
|
|
|
Abstract Graphene, as a potential material for anode materials in lithium-ion batteries (LIBs), can effectively enhance its performance through element doping. In this work, we employ first-principles calculations based on density functional theory (DFT) to analyze the structures, adsorption conditions, diffusion behaviors, and lithium storage capacities of graphene (CmBn) with varying boron (B) doping levels after the adsorption of lithium (Li). The results indicate that the doped graphene maintains its planar structure, demonstrating good structural stability. Adsorption pro-perty calculations reveal that as the B doping concentration increases, the structure (LiCmBn) of CmBn after the adsorption of Li undergoes signi-ficant deformation, and the overall adsorption energy shows a gradual increasing trend, yet remains below the cohesive energy of lithium atoms (-2.74 eV), suggesting that B doping can inhibit the emergence of lithium dendrites. Different charge density and electron localization function demonstrate a strong interaction between CmBn and Li. Ab initio molecular dynamics (AIMD) simulations on C24B8 with a B doping concentration of 25.00% after the adsorption of Li indicate that the C24B8 material exhibits high thermodynamic stability. Density of states calculations reveal that boron doping introduces holes into graphene, enhancing the material’s conductivity, and CmBn maintains excellent conductivity even after the adsorption of Li atoms. Diffusion property calculations indicate that the material’s rate performance improves when the B doping concentration is 2.08%. Calculations of open-circuit voltage and theoretical capacity reveal that the reaction is reversible when the B atom concentration is 12.50%, and the theoretical capacity near the B element can reach 211.59 mAh/g, indicating a suitable doping concentration. This systematic study provides important theoretical guidance for the doping concentration and inhibition of lithium dendrite growth in boron-doped graphene as anode materials for LIBs.
|
|
Published: 25 December 2025
Online: 2025-12-17
|
|
|
|
|
1 Liu B, Zhang Y, Wang Z, et al. Advanced Materials, 2020, 32(34), 2003657. 2 Wang W P, Zhang J, Yin Y X, et al. Advanced Materials, 2020, 32(23), 2000302. 3 Ren W, Zheng Y, Cui Z, et al. Energy Storage Materials, 2021, 35, 157. 4 Li Z, He Q, Zhou C, et al. Energy Storage Materials, 2021, 37, 40. 5 Aslam M K, Niu Y, Hussain T, et al. Nano Energy, 2021, 86, 106142. 6 Liang J, Chen Q Y, Liao X B, et al. Angewandte Chemie-International Edition, 2020, 59(16), 6561. 7 Wei H, Wang H, Li A, et al. Journal of Alloys and Compounds, 2020, 820, 153111. 8 Fu W, Zhao E, Ma R, et al. Advanced Energy Materials, 2020, 10(2), 1902993. 9 Murugadoss V, Lin J, Liu H, et al. Nanoscale, 2019, 11(38), 17579. 10 Zhang X J, Ma F, Srinivas K, et al. Energy Storage Materials, 2022, 45, 656. 11 Huang X, Yin R, Qian L, et al. Ceramics International, 2019, 45(14), 17784. 12 Qian Y, Yuan Y, Wang H, et al. Journal of Materials Chemistry A, 2018, 6(48), 24676. 13 Chen Y, Dai G, Gao Q. ACS Sustainable Chemistry & Engineering, 2019, 7(16), 14064. 14 Guo R, Li Q, Zheng Y, et al. Materials Today, 2019, 30, 26. 15 Kumar R, Macedo W C, Singh R K, et al. ACS Applied Nano Materials, 2019, 2(7), 4626. 16 Zhang B, Wu C, Bao Y, et al. Journal of Colloid and Interface Science, 2025, 677, 151. 17 Guo M, Li X, Liu X, et al. ACS Applied Nano Materials, 2022, 5(11), 16553. 18 Chen J, Yu T, Zheng G, et al. International Journal of Hydrogen Energy, 2024, 82, 1171. 19 Yin S, Zhang X, Liu D, et al. Physical Chemistry Chemical Physics, 2024, 26(4), 3415. 20 Ju D, Li Y, Han B, et al. Diamond and Related Materials, 2024, 149, 111656. 21 Samawi K A, Mohammed B A, Salman E A A, et al. Physical Chemistry Chemical Physics, 2024, 26(12), 9284. 22 Ma X, Xu C, Yang Y, et al. Materials Reports:Energy, 2024, 4(3), 100279. 23 Bajorowicz B, Wilamowska-Zawłocka M, Lisowski W, et al. Applied Surface Science, 2024, 655, 159702. 24 Li L, Li H, Liu L, et al. Nanomaterials, 2024, 14(11), 937. 25 Liang K, Wu T, Misra S, et al. Advanced Science, 2024, 11(31), 2402708. 26 Kumar R, Sahoo S, Joanni E, et al. Materials Today, 2020, 39, 47. 27 Ren X, Zhu J, Du F, et al. The Journal of Physical Chemistry C, 2014, 118(39), 22412. 28 Zhao P, Qin X, Li H, et al. Journal of Solid State Chemistry, 2021, 302, 122418. 29 Zhou L, Hou Z F, Gao B, et al. Journal of Materials Chemistry A, 2016, 4(35), 13407. 30 Kresse G, Joubert D. Physical Review B, 1999, 59(3), 1758. 31 Mattsson A E, Schultz P A, Desjarlais M P, et al. Modelling and Simulation in Materials Science and Engineering, 2004, 13(1), R1. 32 Vanderbilt D. Physical Review B, 1990, 41(11), 7892. 33 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77(18), 3865. 34 Perdew J P, Parr R G, Levy M, et al. Physical Review Letters, 1982, 49(23), 1691. 35 Wang F D, Wang F, Zhang N N, et al. Chemical Physics Letters, 2013, 555, 212. 36 Wang F, Zhang T, Hou X, et al. International Journal of Hydrogen Energy, 2017, 42(15), 10099. 37 Grimme S. Journal of Computational Chemistry, 2006, 27(15), 1787. 38 Halgren T A, Lipscomb W N. Chemical Physics Letters, 1977, 49(2), 225. 39 He X, Zhu Y, Epstein A, et al. npj Computational Materials, 2018, 4(1), 18. 40 Nosé S. The Journal of Chemical Physics, 1984, 81(1), 511. 41 Hoover W G. Physical Review A, 1985, 31(3), 1695. 42 Ganguly G, Halder D, Banerjee A, et al. ACS Sustainable Chemistry & Engineering, 2019, 7, 9808. 43 Chang C, Yin S, Xu J. RSC Advances, 2020, 10(23), 13662. 44 Qi J, Li Q, Huang M, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2024, 683, 132998. 45 Wang C Z, Bo T, Lan J H, et al. Chemical Communications, 2018, 54(18), 2248. 46 Li Z, Cao Y, Li G, et al. Electrochimica Acta, 2021, 366, 137466. 47 Uthaisar C, Barone V, Peralta J E. Journal of Applied Physics, 2009, 106(11), 113715. 48 Sangavi S, Santhanamoorthi N, Vijayakumar S. Molecular Physics, 2019, 117(4), 462. 49 Tang S, Liu C, Sun W, et al. Physical Chemistry Chemical Physics, 2021, 23, 26981. 50 Tang S, Liu C, Sun W, et al. Nanoscale, 2021, 13(38), 16316. 51 Partoens B, Peeters F M. Physical Review B, 2006, 74(7), 075404. 52 Chen J J, Zhang R D, Chen Y. Chemical Journal of Chinese Universities, 2024, 45(7), 152 (in Chinese). 陈俊杰, 张瑞丹, 陈越. 高等学校化学学报, 2024, 45(7), 152. 53 Shen Y, Liu J, Li X, et al. ACS Applied Materials & Interfaces, 2019, 11(39), 35661. 54 Mortazavi B, Shahrokhi M, Zhuang X, et al. Journal of Materials Che-mistry A, 2018, 6(23), 11022. 55 Cai M Y, Tang C M, Zhang Q Y. Acta Physica Sinica, 2019, 68(21), 61 (in Chinese). 蔡梦圆, 唐春梅, 张秋月. 物理学报, 2019, 68(21), 61. 56 Song J, Jiang M J, Shang W H, et al. Energy Storage Science and Technology, 2024, 13(4), 1293 (in Chinese). 宋俊, 蒋明杰, 尚文华, 等. 储能科学与技术, 2024, 13(4), 1293. |
|
|
|