| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Synthesis and Properties of High-temperature-resistant Alumina-based Nanorod Aerogels |
| CHEN Wei, HOU Sifan, WANG Wei, FAN Jinpeng*
|
| Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China |
|
|
|
|
Abstract Aerogels have long been considered a highly promising material for aerospace thermal protection systems. Conventional alumina aerogels, composed primarily of nanoparticles, tend to undergo phase transformation to α-Al2O3 at temperatures exceeding 1 200 ℃, accompanied by skeleton coarsening and pore collapse. In this study, we utilized inexpensive inorganic raw materials, boehmite micropowders, and leveraged the adsorption of anionic groups on the boehmite surface during the hydrothermal process to synthesize transparent boehmite nanorod sols. Subsequently, we employed the sol-gel method to interconnect these nanorods, successfully fabricating alumina-based nanorod aerogels with excellent thermal stability. The study investigated the microstructural evolution of these aerogels under high-temperature conditions and explored various factors influencing their thermal stability. The experimental results demonstrated that the synthesized aerogels exhibit outstanding comprehensive performance, including excellent heat resistance (withstand temperatures up to 1 400 ℃), ultra-low thermal conductivity (0.016 80—0.025 36 W·m-1·K-1), and low density (0.090 9—0.097 5 g·cm-3). These findings hold great promise for advancing technological progress and innovation in the field of aerospace thermal protection materials.
|
|
Published: 10 January 2026
Online: 2026-01-09
|
|
|
|
|
1 Cai H, Jiang Y, Chen Q, et al. Journal of the European Ceramic Society, 2020, 40, 127. 2 Liu Y, Zhao Z, Kong Y, et al. Ceramics International, 2022, 48, 27486. 3 Zhang R, Gu H, Hou X, et al. Journal of Porous Materials, 2021, 28, 57. 4 Wang X, Zhang Z, Wang Y, et al. Advanced Composites and Hybrid Materials, 2023, 6(1), 32. 5 Wang X B, Luan Z Q, Li K, et al. Materials Reports, 2018, 32(13), 2214 (in Chinese). 王馨博, 栾志强, 李凯, 等. 材料导报, 2018, 32(13), 2214. 6 Ding Y, Yang L, Yang M, et al. Ceramics International, 2023, 49, 38058. 7 Yang M, Li X, Chen Z, et al. Ceramics International, 2023, 49, 9165. 8 Wen P G, Chao X Y, Yuan W H, et al. Materials Reports, 2016, 30(17), 51 (in Chinese). 温培刚, 巢雄宇, 袁武华, 等. 材料导报, 2016, 30(17), 51. 9 An Z, Zhang R, Fang D. Ceramics International, 2019, 45, 11368. 10 Li Y, Liu X, Dong L, et al. Ceramics International, 2022, 48, 36287. 11 Chen F, Zhang J, Li N, et al. Materials & Design, 2018, 144, 281. 12 Guo J, Fu S, Deng Y, et al. Nature, 2022, 606, 909. 13 Feng Q, Cai H, Lin H, et al. Nanotechnology, 2018, 29(7), 075702. 14 Dang W, Wang B, Xu Z, et al. Journal of Non-Crystalline Solids, 2023, 600, 122031. 15 Peng F, Jiang Y, Feng J, et al. Journal of the American Ceramic Society, 2022, 105, 2288. 16 Zu G, Shen J, Wang W, et al. Chemistry of Materials, 2014, 26, 5761. 17 Peng F, Jiang Y, Feng J, et al. Journal of the European Ceramic Society, 2020, 40, 2480. 18 Wang W, Zhang Z, Zu G, et al. RSC Advances, 2014, 4, 54864. 19 Cai H, Jiang Y, Feng J, et al. Ceramics International, 2020, 46, 12489. 20 Pakharukova V P, Shalygin A S, Gerasimov E Y, et al. Journal of Solid State Chemistry, 2016, 233, 294. 21 Peng F, Jiang Y, Liu F, et al. Ceramics International, 2022, 48, 16232. 22 Zhang E, Zhang W, Lv T, et al. ACS Applied Materials & Interfaces, 2021, 13, 20548. 23 Bell T E, Gonzalez-Carballo J M, Tooze R P, et al. RSC Advances, 2017, 7, 22369. 24 Jiao W, Wu X, Xue T, et al. Crystal Growth & Design, 2016, 16, 5166. 25 Wu X, Shao G, Cui S, et al. Ceramics International, 2016, 42, 874. 26 Wang X, Tian Y, Yu C, et al. Ceramics International, 2022, 48, 17261. 27 Yang J, Wang Q, Wang T, et al. RSC Advances, 2016, 6, 26271. 28 Gao S, Yang T, Liu S, et al. Journal of Sol-Gel Science and Technology, 2024, 109, 162. 29 Yu H, Tong Z, Yue S, et al. Journal of the European Ceramic Society, 2021, 41, 580. 30 Yang J, Wang Q, Wang T, et al. Journal of Porous Materials, 2017, 24, 889. |
|
|
|