| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Research Progress of Abrasive Flow Machining in the Processing of Complex Microporous Structures Materials for Aeronautic Applications |
| LI Bin1,†, GENG Mengqi1,†, WANG Zhijun2,*, HUANG Jieguang3, WANG Lifei4, XU Tingting1,*
|
1 School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China 2 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China 3 School of Modern Post, Xi'an University of Posts & Telecommunications, Xi'an 710121, China 4 Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China |
|
|
|
|
Abstract With increasing demands for machining precision in aerospace and automotive components, surface quality has emerged as a decisive factor for precision assembly and service performance. Sub-micron surface defects, including burrs and scratches, can induce decrease in the stability of mechanical system, thereby affecting the safety of aviation equipment. Specifically, there have inherent limitations for the application of aerospace in the production of complex micro-porous structures, such as conventional methods like hot forming, machining, and additive manufacturing with their own limitations. Therefore, developing surface finishing technology is an important method to improve the performance of parts. Abrasive flow machining (AFM) has gained significant attention for its effective post-processing of complex, curved and through-hole internal surfaces. This study systematically investigates AFM applications for enhancing the surface quality of microporous components in aerospace applications. Key influencing factors are analyzed and summarized, with emphasis on recent advancements in processing turbine blade cooling holes, fuel nozzles, and servo valve micro-channels, etc. Current technical limitations are discussed as well, and the strategies of future development is proposed. The findings provide new insights into precision surface treatment technologies for complex aerospace components, offering practical guidance for performance optimization in defense and aviation industries.
|
|
Published: 10 January 2026
Online: 2026-01-09
|
|
|
|
|
1 Wei H B, Wang X Y, Gao H. Metal Working (Metal Cutting), 2022, 73(10), 93 (in Chinese). 魏海波, 王续跃, 高航. 金属加工(冷加工), 2022, 73(10), 93. 2 Gradl P R, Greene S E, Protz C, et al. In: 2018 Joint Propulsion Conference. Cincinnati OH, 2018, pp. 4625. 3 Asala G, Andersson J, Ojo O A. Materials Science and Engineering: A, 2018, 738, 111. 4 Gasser A, Backes G, Kelbassa I, et al. Laser Technik Journal, 2010, 7, 58. 5 Gao H, Peng S, Wang X P. Aeronautical Manufacturing Technology, 2019, 62(9), 14 (in Chinese). 高航, 彭灿, 王宣平. 航空制造技术, 2019, 62(9), 14. 6 Özerkan H B, Çoğun C. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(9), 385. 7 Wang H Q, Guo Y, Wang X P, et al. Materials and Manufacturing Processes, 2024, 39(13), 1894. 8 Kumar R, Komma V R. Engineering Research Express, 2024, 6(1), 012504. 9 Zheng C X, Chen S N, Zhang X L. Surface Technology, 2024, 53(17), 17 (in Chinese). 郑宸曦, 陈书凝, 张鑫龙. 表面技术, 2024, 53(17), 17. 10 Goyal A, Singh H, Goyal R, et al. Materials Today: Proceedings, 2022, 56, 3065. 11 Singh P, Singh L, Singh S. Proceedings of the Institution of Mechanical Engineers Part E-Journal of Process Mechanical Engineering, 2022, 236(6), 2765. 12 Dang J N, Lei L M, Shi L, et al. Aeronautical Manufacturing Technology, 2019, 62(7), 79 (in Chinese). 党稼宁, 雷力明, 石磊, 等. 航空制造技术, 2019, 62(7), 79. 13 Li J Y, Sui T, Lu H, et al. International Journal of Advanced Manufacturing Technology, 2022, 121(1-2), 683. 14 Zhang C G, Zhang Y, Zhang F H, et al. Journal of Mechanical Engineering, 2015, 51(7), 188 (in Chinese). 张成光, 张勇, 张飞虎, 等. 机械工程学报, 2015, 51(7), 188. 15 Song W, Wei Q L, Dai Y, et al. Manufacturing Technology & Machine Tool, 2015, 65(8), 118 (in Chinese). 宋卫, 袁巧玲, 戴勇, 等. 制造技术与机床, 2015, 65(8), 118. 16 Jia S, Han J, Li G, et al. Journal of Alloys and Compounds, 2024, 985, 174077. 17 Basha S M, Sankar M R, Venkaiah N. Journal of Manufacturing Processes, 2024, 131, 844. 18 Arora K, Rathore S S, Sharma V. Journal of Materials Engineering and Performance, 2024, 34, 1. 19 Peng C, Xu Q, Ding L, et al. International Journal of Mechanical Sciences, 2024, 262, 108726. 20 Ansari I A, Kar K K, Ramkumar J. Journal of Manufacturing Processes, 2023, 101, 219. 21 Om H, Singh H, Vashishtha G. Engineering Research Express, 2024, 6(3), 035520. 22 Zhang B, Wang X Y, Jiang N, et al. Journal of Materials Research and Technology, 2025, 35, 2755. 23 Fan W L, Sun Y L, Su Q H, et al. The International Journal of Advanced Manufacturing Technology, 2023, 127(1), 253. 24 LI Y G, Song G Z, Hou B W, et al. Journal of Physics: Conference Series, 2021, 1884(1), 012002. 25 Jain R K, Jain V K. Journal of Materials Processing Technology, 2000, 108(1), 62. 26 Wang A C, Weng S H. Journal of Materials Processing Technology, 2007, 192, 486. 27 Fang M H, Yu T, Xi F F. Advances in Manufacturing, 2022, 10(1), 143. 28 Tadi S P, Mamilla R S. Materials Letters, 2025, 389, 138376. 29 Om H, Singh H, Vashishtha G. Engineering Research Express, 2024, 6(3), 035520. 30 Toykoc H, Basu S, De-Meter E C. The International Journal of Advanced Manufacturing Technology, 2025, 137(3), 1891. 31 Fletcher A J, Fioravanti A. Mechanical Engineering Science, 1996, 02, 195. 32 Davies P J, Fletcher A J. Mechanical Engineering Science, 1995, 209(6), 409. 33 Zhang B C, Qiao Y, Khiabani N, et al. Manufacturing Processes, 2022, 73, 248. 34 Wan S, Ang Y J, Sato T, et al. Advanced Manufacturing Technology, 2014, 71(5), 1077. 35 Wang A C, Tsai L, Liang K Z, et al. Transactions of Nonferrous Metals Society of China, 2009, 19, 250. 36 Uhlmann E, Schmiedel C, Wendler J. Procedia CIRP, 2015, 31, 209. 37 Fu Y Z, Gao H, Yan Q S, et al. Advanced Manufacturing Technology, 2020, 107(7), 3569. 38 Bouland C, Urlea V, Beaubier K, et al. Materials Processing Technology, 2019, 273, 116262. 39 Cheng K, Shao Y Z, Bodenhorst R, Jadva M. Manufacturing Science and Engineering, 2017, 139, 8. 40 Kheradmand S, Esmailian M, Fatahy A. Results in Physics, 2016, 6, 568. 41 Mohammadian N, Turenne S, Brailovski V. Materials Processing Technology, 2018, 252, 728. 42 Gao H, Peng S, Wang X P. Aeronautical Manufacturing Technology, 2019, 62(9), 14 (in Chinese). 高航, 彭灿, 王宣平. 航空制造技术, 2019, 62(9), 14. 43 Song J B, Yi H Y. Tool Engineering, 2020, 57(12), 82 (in Chinese). 宋金榜, 易海云. 工具技术, 2020, 57(12), 82. 44 Yao C Y, Zhang Z, Zhu H R. Acta Aeronautica ET Astronautica Sinica, 2024, 45(24), 141 (in Chinese). 姚春意, 张正, 朱惠人. 航空学报, 2024, 45(24), 141. 45 Wang L, Zhang G W, Guo Y F. Aeronautical Manufacturing Technology, 2018, 61(15), 78 (in Chinese). 王力, 张国伟, 郭永丰. 航空制造技术, 2018, 61(15), 78. 46 Wang H J, Cao Z Y, Zhang Y J. Manufacturing Technology & Machine Tool, 2022, 72(9), 69 (in Chinese). 王浩杰, 曹自洋, 张洋精. 制造技术与机床, 2022, 72(9), 69. 47 Tong H, Li Y, Li B Q. Aeronautical Manufacturing Technology, 2021, 64(18), 34 (in Chinese). 佟浩, 李勇, 李宝泉. 航空制造技术, 2021, 64(18), 34. 48 Pan Z F, Fu J Y, Zhang M Q. Aeronautical Manufacturing Technology, 2020, 63(4), 14 (in Chinese). 潘志福, 傅军英, 张明岐. 航空制造技术, 2020, 63(4), 14. 49 He X L, Ma G Q, Xiao Q. Laser & Infrared, 2022, 52(4), 476 (in Chinese). 何雪莉, 马国庆, 肖强. 激光与红外, 2022, 52(4), 476. 50 Li J, Zi J F, Yang X J, et al. Electromachining & Mould, 2018, 53(S1), 54 (in Chinese). 李杰, 訾进锋, 杨小君, 等. 电加工与模具, 2018, 53(S1), 54. 51 Wu B, Chen Y, Zhang Y P. Electromachining & Mould, 2022, 57(5), 41 (in Chinese). 吴博, 陈阳, 张云鹏. 电加工与模具, 2022, 57(5), 41. 52 Guo Y Z. Aeronautical Manufacturing Technology, 1991, 34(3), 20 (in Chinese). 郭应竹. 航空工艺技术, 1991, 34(3), 20. 53 Shi Y, Guo Z, Liu J, et al. Surface Technology, 2021, 50(9), 361 (in Chinese). 石岩, 郭志, 刘佳, 等. 表面技术, 2021, 50(9), 361. 54 Chen X, Liu X L, Zhang J G, et al. Failure Analysis and Prevention, 2023, 18(1), 29 (in Chinese). 陈星, 刘新灵, 张金刚, 等. 失效分析与预防, 2023, 18(1), 29. 55 Han S, Salvatore F, Rech J, et al. Precision Engineering and Nanotech-nology, 2020, 64, 20. 56 Wang Z Y, Du J J, Shi L, et al. Tool Engineering, 2019, 53(3), 51 (in Chinese). 王志勇, 杜金金, 师磊, 等. 工具技术, 2019, 53(3), 51. 57 Zhao Q, Li H, Ye C M, et al. Aviation Precision Manufacturing Technology, 2023, 59(3), 1 (in Chinese). 赵强, 李海, 叶才铭, 等. 航空精密制造技术, 2023, 59(3), 1. 58 Zhang F L. Research on machining technology and optimization of fuel nozzle micro-hole. Master's Thesis, Wuhan University of Technology, China, 2021 (in Chinese). 张服林. 燃油喷嘴微孔加工工艺及优化研究. 硕士学位论文, 武汉理工大学, 2021. 59 Shi H G, Wang F H, Ding Z C, et al. Aeronautical Manufacturing Technology, 2020, 63(13), 92 (in Chinese). 石洪国, 王福海, 丁志纯, 等. 航空制造技术, 2020, 63(13), 92. 60 Li X, Guan Y C. Aeronautical Manufacturing Technology, 2019, 62(Z2), 38 (in Chinese). 李兴, 管迎春. 航空制造技术, 2019, 62(Z2), 38. 61 Wu Y, Chen B Q, Liu W, et al. Aeronautical Materials, 2024, 44(1), 31 (in Chinese). 吴宇, 陈冰清, 刘伟, 等. 航空材料学报, 2024, 44(1), 31. 62 Li J Y, Liu W N, Li F Y, et al. Applied Mechanics and Materials, 2010, 44, 251. 63 Liu W N, Cai Z J, Li Y F, et al. China Mechanical Engineering, 2017, 28(1), 13 (in Chinese). 刘薇娜, 蔡智杰, 李云峰, 等. 中国机械工程, 2017, 28(1), 13. 64 Yang S G. Study on the abrasive flow polishing process of the center flow channel of the auxiliary of the engine fuel nozzle. Master's Thesis, Chang'an University, China, 2020 (in Chinese). 杨曙光. 发动机喷油嘴副喷口中心流道的磨粒流抛光工艺研究. 硕士学位论文, 长安大学, 2020. 65 Chen X, Liu J. Metal Working (Metal Cutting), 2014, 65(16), 30 (in Chinese). 陈曦, 刘军. 金属加工(冷加工), 2014, 65(16), 30. 66 Zhu X W, Che F, Fang B, et al. Hydraulics Pneumatics & Seals, 2020, 40(3), 80 (in Chinese). 朱西薇, 车飞, 方兵, 等. 液压气动与密封, 2020, 40(3), 80. 67 Tang Z Z, Sun Y L, Wang L F, et al. Aeronautical Manufacturing Technology, 2023, 66(Z2), 86 (in Chinese). 汤张喆, 孙玉利, 王利峰, 等. 航空制造技术, 2023, 66(Z2), 86. 68 Li R G, Ding Y T, Yang Z H, et al. Hydraulics Pneumatics & Seals, 2022, 42(7), 109 (in Chinese). 李瑞光, 丁宇亭, 杨增辉, 等. 液压气动与密封, 2022, 42(7), 109. 69 Wang J P, Song C, Ling Y, et al. Surface Technology, 2022, 51(4), 299 (in Chinese). 王景坡, 宋超, 凌洋, 等. 表面技术, 2022, 51(4), 299. 70 Guo J, Gui L, Hou W, et al. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(12), 3367 (in Chinese). 郭静, 桂林, 侯威, 等. 吉林大学学报(工学版), 2023, 53(12), 3367. 71 Chen J L, Chen J, Wang W R, et al. In:2005 China Mechanical Engineering Society Annual Meeting the 11th National Special Processing Academic Conference. Chongqing, 2005, pp. 544 (in Chinese). 陈济轮, 陈靖, 王伟荣, 等. 2005年中国机械工程学会年会第11届全国特种加工学术会议. 重庆, 2005, pp. 544. 72 Gao H, Li S C, Fu Y Z, et al. Acta Aeronautica et Astronautica Sinica, 2017, 38(10), 231 (in Chinese). 高航, 李世宠, 付有志, 等. 航空学报, 2017, 38(10), 231. 73 Cai Z J, Liu W N, Gao B B, et al. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(11), 1722 (in Chinese). 蔡智杰, 刘薇娜, 高彬彬, 等. 机械科学与技术, 2017, 36(11), 1722. 74 Baehre D, Bruennet H, Swat M. Procedia CIRP, 2012, 1, 419. 75 Duval-Chaneac M S, Han S, Claudin C, et al. Precision Engineering, 2018, 54, 1. |
|
|
|