Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24100163-7    https://doi.org/10.11896/cldb.24100163
  金属与金属基复合材料 |
超细晶和纳米晶钨基合金制备方法的研究现状与进展
郝立宇, 刘星, 申尚昆, 张双乐, 付恩刚*
北京大学物理学院技术物理系核物理与核技术国家重点实验室,北京 100871
Research Progress in Preparation of Ultra-fine Grained and Nanocrystalline W-based Alloys
HAO Liyu, LIU Xing, SHEN Shangkun, ZHANG Shuangle, FU Engang*
State Key Laboratory of Nuclear Physics and Technology, Department of Technical Physics, School of Physics, Peking University, Beijing 100871, China
下载:  全 文 ( PDF ) ( 22231KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 先进核聚变能系统的发展需要具有更加优良力学性能和抗辐照性能的钨基合金。超细晶钨(晶粒尺寸0.1~1.0 μm)和纳米晶钨(晶粒尺寸小于0.1 μm)具有低溅射腐蚀速率、良好的抗辐照能力以及较高的高温强度等,因而在核工业、航空航天、电子器件等领域中具有重要的潜在应用价值。本文从自上而下法和自下而上法两个方面介绍了超细晶和纳米晶钨基合金的制备方法及其主要性能,综述了国内外在制备超细晶和纳米晶钨基合金方向上的最新成果,分析了国内外超细晶和纳米晶钨基合金的制备技术、制备过程及其存在的问题,并对超细晶和纳米晶钨的应用和发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝立宇
刘星
申尚昆
张双乐
付恩刚
关键词:  超细晶  纳米晶  钨基合金  制备  性能    
Abstract: The urgent development needs of the advanced nuclear fusion energy systems have called for the continuous development of W-based alloys with better mechanical properties and irradiation resistance. Ultra-fine grained W (grain size of 0.1—1.0 μm) and nanocrystalline W (grain size smaller than 0.1 μm), with excellent properties such as low sputtering corrosion rate, good radiation tolerance, high high-temperature strength, have important potential applications in the nuclear industry, aerospace, and electronic devices. This paper introduced the preparation methods of ultra-fine grained/nanocrystalline W-based alloys and their main properties from both the top-down method and bottom-up method, summarized the latest and the most advanced achievements in the direction of preparing ultra-fine grained/nanocrystalline W-based materials, analyzed the process of the preparation of the most advanced ultra-fine grained/nanocrystalline W-based materials and their problems. In the end, the research and application prospects of W-based alloys were proposed.
Key words:  ultra-fine grain    nanocrystal    W-based alloys    preparation    performance
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TL341  
基金资助: 国家磁约束核聚变能发展研究专项基金(2022YFE03030000;2019YFE03120003)
通讯作者:  *付恩刚,北京大学物理学院教授、博士研究生导师。目前主要从事应用核物理、核材料、离子束材料辐照与改性等方面的研究工作。efu@pku.edu.cn   
作者简介:  郝立宇,现为北京大学物理学院博士研究生,在付恩刚教授的指导下进行研究。目前主要研究领域为应用核物理与核材料。
引用本文:    
郝立宇, 刘星, 申尚昆, 张双乐, 付恩刚. 超细晶和纳米晶钨基合金制备方法的研究现状与进展[J]. 材料导报, 2025, 39(13): 24100163-7.
HAO Liyu, LIU Xing, SHEN Shangkun, ZHANG Shuangle, FU Engang. Research Progress in Preparation of Ultra-fine Grained and Nanocrystalline W-based Alloys. Materials Reports, 2025, 39(13): 24100163-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100163  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24100163
1 Zhang X H, Hatter K, Chen Y X, et al.Progress in Materials Science, 2018, 96, 217.
2 Beyerlein I J, Caro A, Demkowicz M J, et al.Materials Today, 2013, 16, 443.
3 Trinkaus H, Singh B N.Journal of Nuclear Materials, 2003, 323, 229.
4 Zhang G S.China Nuclear Power, 2018, 11(1), 30 (in Chinese).
张国书. 中国核电, 2018, 11(1), 30.
5 Li J G.Physics, 2016, 45(2), 88 (in Chinese).
李建刚. 物理, 2016, 45(2), 88.
6 Hasegawa A, Fukuda M, Yabuuchi K, et al.Journal of Nuclear Materials, 2016, 471, 175.
7 Bolt H, Barabash V, Federici G, et al.Journal of Nuclear Materials, 2002, 307, 43.
8 Barabash V, Federici G, Linke J, et al.Journal of Nuclear Materials, 2003, 313, 42.
9 G. Ackland.Science, 2010, 327, 1587.
10 Grimes R, Konings R, Edwards L.Nature Materials, 2008, 7, 683.
11 Lassner E, Schubert W D.Tungsten:Properties, chemistry, technology of the element, alloys, and chemical compounds. Springer, Germany, 1999, pp. 152.
12 Lv D.China Tungsten Industry, 2000, 15(6), 27.
13 Tsao B, Jacobson D, Morris J.Engineering Fracture Mechanics, 1989, 34(3), 567.
14 Yu J, Lee C, Bouilly D, et al.Nano Letters, 2016, 16(5), 3385.
15 Yang L, Majumdar K, Liu H, et al.Nano Letters, 2014, 14(11), 6275.
16 Barabash V, Akiba M, Bonal J, et al.Journal of Nuclear Materials, 1998, 258 (98), 149.
17 Zhang K, Müller A, Greuner H, et al.Fusion Engineering and Design, 2020, 154, 111510.
18 Bague P, Morizot J, Desgardin G.Journal of Physics D Applied Physics, 1994, 27(2), 402.
19 Thomas R, Gibson J, Haas G, et al.IEEE Transactions on Electron Devices, 1990, 37(3), 850.
20 Li J G, Wu S T.Progresses of tokamak fusion reactor, Shanghai Jiao Tong University Press, China, 2023, pp. 17 (in Chinese).
李建刚, 武松涛. 托卡马克聚变堆研究进展, 上海交通大学出版社, 2023, pp. 17.
21 Liu Y, Li Q, Chen W.Chinese Science Bulletin, 2024, 69(3), 346 (in Chinese).
刘永, 李强, 陈伟. 科学通报, 2024, 69(3), 346.
22 Philipps V.Journal of Nuclear Materials, 2011, 415(1), S2.
23 Hasegawa A, Fukuda M, Yabuuchi K, et al.Journal of Nuclear Materials, 2016, 471, 175.
24 Wu Z M. Research on preparation technology and properties of nanocrystalline W-based materials. Ph. D. Thesis, Peking University, China, 2020 (in Chinese).
吴早明. 纳米晶钨基材料的制备技术与性能研究. 博士学位论文, 北京大学, 2020.
25 Sauthoff N.Fusion Engineering and Design, 2006, 81, 87.
26 Meyers M, Mishra A, Benson D.Progress in Materials Science, 2006, 51, 427.
27 Zhao Y, Topping T, Bingert J, et al.Advanced Materials, 2008, 20, 3028.
28 Zhou Q, Zhao J, Xie J, et al.Materials Science and Engineering A, 2014, 608, 184.
29 Li X, Liu W, Xu Y, Liu C, et al.Nuclear Fusion, 2013, 53, 123014.
30 El-Atwani O, Hattar K, Hinks J, et al.Journal of Nuclear Materials, 2015, 458, 216.
31 Zhou Z, Tan J, Qu D, et al.Journal of Nuclear Materials, 2012, 431, 202.
32 Dong Z, Liu N, Ma Z, et al.Journal of Alloys and Compounds, 2017, 695, 2969.
33 Calvo A, García-Rosales C, Koch F, et al.Nuclear Materials and Energy, 2016, 9, 422.
34 Dong Z, Ma Z, Yu L, et al.Nature Communications, 2021, 12, 5052.
35 Zhao B L, Xie Z M, Liu R, et al.Fusion Engineering and Design, 2021, 164, 112208.
36 Kurishita H, Kobayashi S, Nakai K, et al.Journal of Nuclear Materials, 2008, 377, 34.
37 Wang R, Xie Z, Wang Y, et al.International Journal of Refractory Metals and Hard Materials, 2019, 80, 104.
38 Wu Z M, Zhang J, Fu E G, et al.Nuclear Fusion, 2019, 59, 106050.
39 Kecskes L, Cho K, Dowding R, et al.Materials Science and Engineering A, 2007, 467, 33.
40 Edalati K, Toh S, Watanabe M, et al.Scripta Materialia, 2012, 66, 386.
41 Valiev R, Islamgaliev R, Alexandrov I V.Progress in Materials Science, 2000, 45(2), 103.
42 Valiev R, Krasiinikov N, Tsenev N.Materials Science and Engineering A, 1991, 137, 35.
43 Furukawa M, Horita Z, Langdon T.Metals and Materials International, 2013, 9, 141.
44 Zhou L, Liu G, Ma X, et al.Acta Materialia, 2008, 56, 78.
45 Saito Y, Tsuji N, Utsunomiya H, et al.Scripta Materialia, 2008, 39, 1221.
46 Shkodich N, Spasova M, Farle M, et al.Journal of Alloys and Compounds, 2020, 816, 152611.
47 Xia M, Yan Q, Xu L, et al.Journal of Nuclear Materials, 2013, 434, 85.
48 Zhang L, Controllable fabrication of co-coated coarse grained WC powder by fluidized bed chemical vapor deposition and its application. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2020 (in Chinese).
张磊. Co包覆粗晶WC粉体的流化床化学气相沉积可控制备及应用. 博士学位论文, 中国科学院大学, 2020.
49 Prabhu G, Chakraborty A, Sarma B.International Journal of Refractory Metals and Hard Materials, 2009, 27, 545.
50 Edalati K, Horita Z.Materials Science and Engineering A, 2016, 652, 325.
51 Wei Q, Zhang H T, Schuster B E, et al.Acta Materialia, 2006, 54, 4079.
52 Li P, Lin Q, Zhou Y F, et al.Acta Metallurgica Sinica, 2019, 55(4), 521 (in Chinese).
李萍, 林泉, 周玉峰, 等. 金属学报, 2019, 55(4), 521.
53 Valiev R.Nature Materials, 2004, 3, 511.
54 Wei Q, Zhang H, Schuster B, et al.Acta Materialia, 2006, 54, 4079.
55 Hao T, Fan Z, Zhao S, et al.Journal of Nuclear Materials, 2013, 433, 351.
56 Zhao B L. Fabrication and Properties of fine-grain tungsten alloy. Ph. D. Thesis, University of Science and Technology of China, China, 2021 (in Chinese).
赵帮磊. 细晶钨基合金的制备及性能研究. 博士学位论文, 中国科学技术大学, 2021.
57 Reiser J, Rieth M, Möslang A, et al.Journal of Nuclear Materials, 2013, 434(1), 357.
58 Wu Z M, Liang Y X, Fu E G.Powder Technology, 2018, 326, 222.
59 Wang Z M, Dong X L, Li X F, et al.Nature Communications, 2024, 15, 757.
60 Wang H, Tan K, Cui K, et al.Advanced Ceramics, 2023, 44(4), 303 (in Chinese).
王浩, 谭可, 崔凯, 等. 现代技术陶瓷, 2023, 44(4), 303.
61 Song Z H, Guo H Q, Wu C H, et al.Rare Metal Materials and Engineering, 2011, 40(12), 2216 (in Chinese).
宋志华, 郭亨群, 吴冲浒, 等. 稀有金属材料与工程, 2011, 40(12), 2216.
62 Cui Y T, Wang J S, Liu W.Rare Metal Materials and Engineering, 2011, 40(3), 507 (in Chinese).
崔云涛, 王金淑, 刘伟. 稀有金属材料与工程, 2011, 40(3), 507.
63 Liu B F. A study on preparation of nanometer powders of tungsten-based materials. Master’s Thesis, Nanchang University, China, 2006 (in Chinese).
刘兵发.纳米钨系材料粉体的制备研究.硕士学位论文, 南昌大学, 2006.
64 Dobrzański L A, Dobrzańska-Danikiewicz A D, Achtelik-Franczak A, et al.Powder Metallurgy-Fundamentals and Case Studies, 2017, 197, 65376.
65 Tokita M.Materials Science and Engineering B, 2002, 90, 34.
66 Gao L, Miyamoto H.Journal of Inorganic Materials, 1997, 2(14), 129 (in Chinese).
高镰, 宫本大树. 无机材料学报, 1997, 2(14), 129.
67 Jung Y, Ha C, Shin J, et al.Materials Science and Engineering A, 2002, 323(1), 110.
68 Hao L Y, Shen S K, Wang S W, et al.Small, 2024, 202401307.
69 张久兴, 汤忠彪, 朱齐晨, 等. 中国专利, CN202211681279, 2023.
70 Chen H, Zhao J, Shimai S Z, et al.Journal of Advanced Ceramics, 2022, 4, 582.
71 Zhang L, Li X, Qu X, et al.Advanced Materials, 2022, 202205807.
72 Moliar O, Tian J H, Zhang S S, et al.Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50, 100 (in Chinese).
亚历山大·莫利亚尔, 田金华, 张莎莎, 等. 南京航空航天大学学报, 2018, 50, 100.
73 Luo L M, Zhao Z H, Yao G, et al.The Chinese Journal of Nonferrous Metals, 2021, 31, 76 (in Chinese).
罗来马, 赵志豪, 姚刚, 等. 中国有色金属学报, 2021, 31, 76.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 张红, 鄢文, 李楠, 张会, 陈哲, 李维泰. 一维陶瓷相增强的含碳耐火材料研究进展[J]. 材料导报, 2025, 39(9): 24070074-9.
[3] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[4] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[5] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[6] 陈新明, 陈姣姣, 刘晓辉, 焦华喆, 杨志, 杨柳华. 基于压滤效应影响的废弃石粉-黏土浆液性能研究[J]. 材料导报, 2025, 39(9): 23060049-10.
[7] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[8] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[9] 乐祥和, 张晓红, 乔英杰, 白成英, 王晓东, 李茂源, 陈为为. 石墨烯改性热固性树脂复合材料研究进展[J]. 材料导报, 2025, 39(9): 24040177-9.
[10] 来仁杰, 辛俊伟, 王磊, 王旭东, 吕永涛. 电化学阻抗谱技术在水处理分离膜研究中的应用进展[J]. 材料导报, 2025, 39(8): 24040168-9.
[11] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[12] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[13] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[14] 武金帆, 徐芬, 孙立贤, 廖鹿敏, 管彦洵. 具有抗氧化性的Al-Bi(C2H5OH)3-C多孔块体制氢材料[J]. 材料导报, 2025, 39(8): 24030133-6.
[15] 温晋太, 胡怀谷, 安江山, 韩婷, 李欣俞, 胡季帆. 基于机器学习的快淬NdFeB磁体永磁性能分析与预测[J]. 材料导报, 2025, 39(8): 24030158-7.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[4] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[5] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[6] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[7] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed