Abstract: The urgent development needs of the advanced nuclear fusion energy systems have called for the continuous development of W-based alloys with better mechanical properties and irradiation resistance. Ultra-fine grained W (grain size of 0.1—1.0 μm) and nanocrystalline W (grain size smaller than 0.1 μm), with excellent properties such as low sputtering corrosion rate, good radiation tolerance, high high-temperature strength, have important potential applications in the nuclear industry, aerospace, and electronic devices. This paper introduced the preparation methods of ultra-fine grained/nanocrystalline W-based alloys and their main properties from both the top-down method and bottom-up method, summarized the latest and the most advanced achievements in the direction of preparing ultra-fine grained/nanocrystalline W-based materials, analyzed the process of the preparation of the most advanced ultra-fine grained/nanocrystalline W-based materials and their problems. In the end, the research and application prospects of W-based alloys were proposed.
1 Zhang X H, Hatter K, Chen Y X, et al.Progress in Materials Science, 2018, 96, 217. 2 Beyerlein I J, Caro A, Demkowicz M J, et al.Materials Today, 2013, 16, 443. 3 Trinkaus H, Singh B N.Journal of Nuclear Materials, 2003, 323, 229. 4 Zhang G S.China Nuclear Power, 2018, 11(1), 30 (in Chinese). 张国书. 中国核电, 2018, 11(1), 30. 5 Li J G.Physics, 2016, 45(2), 88 (in Chinese). 李建刚. 物理, 2016, 45(2), 88. 6 Hasegawa A, Fukuda M, Yabuuchi K, et al.Journal of Nuclear Materials, 2016, 471, 175. 7 Bolt H, Barabash V, Federici G, et al.Journal of Nuclear Materials, 2002, 307, 43. 8 Barabash V, Federici G, Linke J, et al.Journal of Nuclear Materials, 2003, 313, 42. 9 G. Ackland.Science, 2010, 327, 1587. 10 Grimes R, Konings R, Edwards L.Nature Materials, 2008, 7, 683. 11 Lassner E, Schubert W D.Tungsten:Properties, chemistry, technology of the element, alloys, and chemical compounds. Springer, Germany, 1999, pp. 152. 12 Lv D.China Tungsten Industry, 2000, 15(6), 27. 13 Tsao B, Jacobson D, Morris J.Engineering Fracture Mechanics, 1989, 34(3), 567. 14 Yu J, Lee C, Bouilly D, et al.Nano Letters, 2016, 16(5), 3385. 15 Yang L, Majumdar K, Liu H, et al.Nano Letters, 2014, 14(11), 6275. 16 Barabash V, Akiba M, Bonal J, et al.Journal of Nuclear Materials, 1998, 258 (98), 149. 17 Zhang K, Müller A, Greuner H, et al.Fusion Engineering and Design, 2020, 154, 111510. 18 Bague P, Morizot J, Desgardin G.Journal of Physics D Applied Physics, 1994, 27(2), 402. 19 Thomas R, Gibson J, Haas G, et al.IEEE Transactions on Electron Devices, 1990, 37(3), 850. 20 Li J G, Wu S T.Progresses of tokamak fusion reactor, Shanghai Jiao Tong University Press, China, 2023, pp. 17 (in Chinese). 李建刚, 武松涛. 托卡马克聚变堆研究进展, 上海交通大学出版社, 2023, pp. 17. 21 Liu Y, Li Q, Chen W.Chinese Science Bulletin, 2024, 69(3), 346 (in Chinese). 刘永, 李强, 陈伟. 科学通报, 2024, 69(3), 346. 22 Philipps V.Journal of Nuclear Materials, 2011, 415(1), S2. 23 Hasegawa A, Fukuda M, Yabuuchi K, et al.Journal of Nuclear Materials, 2016, 471, 175. 24 Wu Z M. Research on preparation technology and properties of nanocrystalline W-based materials. Ph. D. Thesis, Peking University, China, 2020 (in Chinese). 吴早明. 纳米晶钨基材料的制备技术与性能研究. 博士学位论文, 北京大学, 2020. 25 Sauthoff N.Fusion Engineering and Design, 2006, 81, 87. 26 Meyers M, Mishra A, Benson D.Progress in Materials Science, 2006, 51, 427. 27 Zhao Y, Topping T, Bingert J, et al.Advanced Materials, 2008, 20, 3028. 28 Zhou Q, Zhao J, Xie J, et al.Materials Science and Engineering A, 2014, 608, 184. 29 Li X, Liu W, Xu Y, Liu C, et al.Nuclear Fusion, 2013, 53, 123014. 30 El-Atwani O, Hattar K, Hinks J, et al.Journal of Nuclear Materials, 2015, 458, 216. 31 Zhou Z, Tan J, Qu D, et al.Journal of Nuclear Materials, 2012, 431, 202. 32 Dong Z, Liu N, Ma Z, et al.Journal of Alloys and Compounds, 2017, 695, 2969. 33 Calvo A, García-Rosales C, Koch F, et al.Nuclear Materials and Energy, 2016, 9, 422. 34 Dong Z, Ma Z, Yu L, et al.Nature Communications, 2021, 12, 5052. 35 Zhao B L, Xie Z M, Liu R, et al.Fusion Engineering and Design, 2021, 164, 112208. 36 Kurishita H, Kobayashi S, Nakai K, et al.Journal of Nuclear Materials, 2008, 377, 34. 37 Wang R, Xie Z, Wang Y, et al.International Journal of Refractory Metals and Hard Materials, 2019, 80, 104. 38 Wu Z M, Zhang J, Fu E G, et al.Nuclear Fusion, 2019, 59, 106050. 39 Kecskes L, Cho K, Dowding R, et al.Materials Science and Engineering A, 2007, 467, 33. 40 Edalati K, Toh S, Watanabe M, et al.Scripta Materialia, 2012, 66, 386. 41 Valiev R, Islamgaliev R, Alexandrov I V.Progress in Materials Science, 2000, 45(2), 103. 42 Valiev R, Krasiinikov N, Tsenev N.Materials Science and Engineering A, 1991, 137, 35. 43 Furukawa M, Horita Z, Langdon T.Metals and Materials International, 2013, 9, 141. 44 Zhou L, Liu G, Ma X, et al.Acta Materialia, 2008, 56, 78. 45 Saito Y, Tsuji N, Utsunomiya H, et al.Scripta Materialia, 2008, 39, 1221. 46 Shkodich N, Spasova M, Farle M, et al.Journal of Alloys and Compounds, 2020, 816, 152611. 47 Xia M, Yan Q, Xu L, et al.Journal of Nuclear Materials, 2013, 434, 85. 48 Zhang L, Controllable fabrication of co-coated coarse grained WC powder by fluidized bed chemical vapor deposition and its application. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2020 (in Chinese). 张磊. Co包覆粗晶WC粉体的流化床化学气相沉积可控制备及应用. 博士学位论文, 中国科学院大学, 2020. 49 Prabhu G, Chakraborty A, Sarma B.International Journal of Refractory Metals and Hard Materials, 2009, 27, 545. 50 Edalati K, Horita Z.Materials Science and Engineering A, 2016, 652, 325. 51 Wei Q, Zhang H T, Schuster B E, et al.Acta Materialia, 2006, 54, 4079. 52 Li P, Lin Q, Zhou Y F, et al.Acta Metallurgica Sinica, 2019, 55(4), 521 (in Chinese). 李萍, 林泉, 周玉峰, 等. 金属学报, 2019, 55(4), 521. 53 Valiev R.Nature Materials, 2004, 3, 511. 54 Wei Q, Zhang H, Schuster B, et al.Acta Materialia, 2006, 54, 4079. 55 Hao T, Fan Z, Zhao S, et al.Journal of Nuclear Materials, 2013, 433, 351. 56 Zhao B L. Fabrication and Properties of fine-grain tungsten alloy. Ph. D. Thesis, University of Science and Technology of China, China, 2021 (in Chinese). 赵帮磊. 细晶钨基合金的制备及性能研究. 博士学位论文, 中国科学技术大学, 2021. 57 Reiser J, Rieth M, Möslang A, et al.Journal of Nuclear Materials, 2013, 434(1), 357. 58 Wu Z M, Liang Y X, Fu E G.Powder Technology, 2018, 326, 222. 59 Wang Z M, Dong X L, Li X F, et al.Nature Communications, 2024, 15, 757. 60 Wang H, Tan K, Cui K, et al.Advanced Ceramics, 2023, 44(4), 303 (in Chinese). 王浩, 谭可, 崔凯, 等. 现代技术陶瓷, 2023, 44(4), 303. 61 Song Z H, Guo H Q, Wu C H, et al.Rare Metal Materials and Engineering, 2011, 40(12), 2216 (in Chinese). 宋志华, 郭亨群, 吴冲浒, 等. 稀有金属材料与工程, 2011, 40(12), 2216. 62 Cui Y T, Wang J S, Liu W.Rare Metal Materials and Engineering, 2011, 40(3), 507 (in Chinese). 崔云涛, 王金淑, 刘伟. 稀有金属材料与工程, 2011, 40(3), 507. 63 Liu B F. A study on preparation of nanometer powders of tungsten-based materials. Master’s Thesis, Nanchang University, China, 2006 (in Chinese). 刘兵发.纳米钨系材料粉体的制备研究.硕士学位论文, 南昌大学, 2006. 64 Dobrzański L A, Dobrzańska-Danikiewicz A D, Achtelik-Franczak A, et al.Powder Metallurgy-Fundamentals and Case Studies, 2017, 197, 65376. 65 Tokita M.Materials Science and Engineering B, 2002, 90, 34. 66 Gao L, Miyamoto H.Journal of Inorganic Materials, 1997, 2(14), 129 (in Chinese). 高镰, 宫本大树. 无机材料学报, 1997, 2(14), 129. 67 Jung Y, Ha C, Shin J, et al.Materials Science and Engineering A, 2002, 323(1), 110. 68 Hao L Y, Shen S K, Wang S W, et al.Small, 2024, 202401307. 69 张久兴, 汤忠彪, 朱齐晨, 等. 中国专利, CN202211681279, 2023. 70 Chen H, Zhao J, Shimai S Z, et al.Journal of Advanced Ceramics, 2022, 4, 582. 71 Zhang L, Li X, Qu X, et al.Advanced Materials, 2022, 202205807. 72 Moliar O, Tian J H, Zhang S S, et al.Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50, 100 (in Chinese). 亚历山大·莫利亚尔, 田金华, 张莎莎, 等. 南京航空航天大学学报, 2018, 50, 100. 73 Luo L M, Zhao Z H, Yao G, et al.The Chinese Journal of Nonferrous Metals, 2021, 31, 76 (in Chinese). 罗来马, 赵志豪, 姚刚, 等. 中国有色金属学报, 2021, 31, 76.