Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 25010118-7    https://doi.org/10.11896/cldb.25010118
  无机非金属及其复合材料 |
陶瓷层结构对复合防弹板抗子弹多次侵彻性能的影响
贾松1, 何成龙1,2,*, 霍子怡1, 黄治镡1, 蒲彦蓉1
1 中北大学机电工程学院,太原 030051
2 中北大学高端装备可靠性技术山西重点实验室,太原 030051
The Influence of Ceramic Layer Structure on the Anti Multiple Bullet Penetration Performance of Composite Ballistic Plate
JIA Song1, HE Chenglong1,2,*, HUO Ziyi1, HUANG Zhixin1, PU Yanrong1
1 College of Mechatronic Engineering, North University of China, Taiyuan 030051, China
2 Shanxi Key Laboratory of High-end Equipment Reliability Technology, North University of China, Taiyuan 030051, China
下载:  全 文 ( PDF ) ( 23979KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 拼接陶瓷防弹板广泛应用于抵御子弹打击,提高其在子弹多次冲击下的防护性能至关重要。采用7.62 mm穿甲燃烧弹对Al2O3/UHMWPE防弹板进行弹道冲击实验,获得陶瓷裂纹分布规律与损伤形态。通过有限元模拟子弹侵彻过程中单层与三叠层陶瓷防弹板的应力波传播与陶瓷层动态损伤响应,分析子弹二次打击下不同弹着间距对防弹板各层材料消耗子弹动能规律的影响。结果表明:在子弹单次冲击下,三叠层陶瓷较单层陶瓷具有更优的抗侵彻性能,多消耗15.7%的子弹动能。在子弹二次冲击下,随着两发子弹打击间距的增加,防弹板的各层材料的能量吸收比例逐渐与第一次打击时相似。在Δl=5~15 mm时,三叠层陶瓷防弹板抗子弹二次冲击性能较单层陶瓷的有显著提高,三叠层陶瓷结构可以有效减小陶瓷损伤区域。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾松
何成龙
霍子怡
黄治镡
蒲彦蓉
关键词:  错位叠层  二次冲击  弹着间距  破坏机理  吸能比例    
Abstract: Splicing ceramic ballistic plateis widely used to defend against bullet strikes. It is of great significance to improve its protective performance under multiple bullet impacts. Ballistic impact experiments were conducted on the Al2O3/UHMWPE ballistic plate with 7.62 mm API, the crack distribution and the damage morphology of the ballistic plate were obtained. The stress wave propagation and dynamic damage response of single-layer and three-layer ceramic ballistic plates were simulated during bullet penetration through finite element software. The influence of different impact distances on the kinetic energy consumption of materials in each layer of the bulletproof plate under secondary bullet impact was analyzed.The results indicate that under single bullet impact, the three-layer ceramic has better anti penetration performance than the single-layer ceramic, consuming 15.7% more bullet kinetic energy. Under the secondary impact of the bullet, as the distance between the two bullets increases, the energy absorption ratio of each layer of the ballistic plate gradually become similar to that of the first impact. When Δl=5—15 mm, the anti bullets secondary impact performance of the three-layer ceramic ballistic plate is significantly improved compared to the single-layer ceramic, and the three-layer ceramic structure can effectively reduce the damage area of the ceramic.
Key words:  misaligned stacking    secondary impact    impact distance    failure mechanism    energy absorption ratio
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TJ04  
基金资助: 博士后科学基金(2021M702981);山西省基础研究计划资助项目(20210302124197);中北大学第二十届研究生科研项目(20242003)
通讯作者:  *何成龙,中北大学机电工程学院副教授,目前主要从事脆性材料冲击动力学研究、复合材料抗侵彻研究、武器结构动力学分析、断裂与损伤力学机理等研究工作,参与多项国防重点项目。hechenglong@nuc.edu.cn   
作者简介:  贾松,现为中北大学机电与工程学院硕士研究生,在何成龙副教授的指导下进行研究。目前主要研究领域为冲击动力学。
引用本文:    
贾松, 何成龙, 霍子怡, 黄治镡, 蒲彦蓉. 陶瓷层结构对复合防弹板抗子弹多次侵彻性能的影响[J]. 材料导报, 2025, 39(13): 25010118-7.
JIA Song, HE Chenglong, HUO Ziyi, HUANG Zhixin, PU Yanrong. The Influence of Ceramic Layer Structure on the Anti Multiple Bullet Penetration Performance of Composite Ballistic Plate. Materials Reports, 2025, 39(13): 25010118-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25010118  或          https://www.mater-rep.com/CN/Y2025/V39/I13/25010118
1 Zhang R, Han B, Zhou Y, et al. Composite Structures, 2023, 304(P2), 116390.
2 Zou Y C, X C, Yin J H, et al. Acta Materiae Compositae Sinica, 2022, 39(4), 1748 (in Chinese).
邹有纯, 熊超, 殷军辉, 等. 复合材料学报, 2022, 39 (4), 1748.
3 Cao J F, Lai J Z, Zhou J H, et al. Journal of Mechanical Science and Technology, 2020, 34(7), 2783.
4 Rozenberg Z, Yeshurun Y. International Journal of Impact Engineering, 1988, 7(3), 357.
5 Cui F D, Wu G Q, Ma T, et al. Defence Science Journal, 2017, 67(3), 260.
6 Jiang Z X, Gao G F. Materials Reports, 2020, 34(23), 23064 (in Chinese).
蒋招绣, 高光发. 材料导报, 2020, 34(23), 23064.
7 Yu Y L, Jiang Z X, Wang X D, et al. Transactions of Beijing Institute of Technology, 2021, 41(7), 713 (in Chinese).
余毅磊, 蒋招绣, 王晓东, 等. 北京理工大学学报, 2021, 41(7), 713.
8 Straßburger E. Journal of the European Ceramic Society, 2008, 29(2), 267.
9 Übeyli Mustafa, Yıldırım R. Orhan, Ögel Bilgehan. Journal of Materials Processing Tech, 2007, 196(1), 356.
10 He C L, Huo Z Y, Liu Y Q, et al. Acta Materiae Compositae Sinica, 2024, 41(6), 3228 (in Chinese).
何成龙, 霍子怡, 刘亚青, 等. 复合材料学报, 2024, 41(6), 3228.
11 Cui F D, Ma T, Li W P, et al. Journal of Inorganic Materials, 2017, 32(9), 967 (in Chinese).
崔凤单, 马天, 李伟萍, 等. 无机材料学报, 2017, 32(9), 967.
12 Kong X P. Study on the debonding mechanism and the protection capability of ceramic composite armors against multi-hit. Master’s Thesis, National University of Defense Technology, China, 2010 (in Chinese).
孔晓鹏. 陶瓷复合装甲脱粘机理和抗多发打击研究. 硕士学位论文, 国防科学技术大学, 2010.
13 Prakash A, Rajasankar J, Iyer R N, et al. International Journal for Computational Methods in Engineering Science and Mechanics, 2014, 15(3), 192.
14 Yu W H, Li W P, Shangguan Y F, et al. Defence Technology, 2023, 19(1), 103.
15 Seifert W, Strassburger E, Dolak M, et al. International Journal of Impact Engineering, 2018, 122, 50.
16 Shen Y H, Wang Y W, Du S F, et al. Journal of Materials Research and Technology, 2021, 13, 1496.
17 Eghtesad A, Shafiei A, Mahzoon M. Applied Mathematical Modelling, 2012, 36(6), 2724.
18 Liu C, Hong C Q, Wang X W, et al. Materials Letters, 2022, 318, 132233.
19 Vorotilo S, Potanin Y A, Loginov P, et al. Ceramics International, 2020, 46(6), 7861.
20 Liu X C, Liu Z, Liu Y J, et al. Composites Part B, 2022, 230, 109552.
21 Wang B H, Hu X Z, Lu P M. Engineering Fracture Mechanics, 2020, 229, 106961.
22 Wu G, Wang X, Wang Y T, et al. Materials & Design, 2022, 224, 111371.
23 Zhu D J, Zhen X L. Acta Materiae Compositae Sinica, 2022, 39(12), 5958 (in Chinese).
朱德举, 镇鑫楼. 复合材料学报, 2022, 39(12), 5958.
24 Wang D Z, Qing R M, Sun N, et al. Materials Reports, 2021, 35(18), 18216 (in Chinese).
王东哲, 秦溶蔓, 孙娜, 等. 材料导报, 2021, 35(18), 18216.
25 Wang Z G, Sun Y Y, Wu H, et al. Construction and Building Materials, 2018, 169, 851.
26 Miao T Y, Shen L M, Xu Q F, et al. Composites Part B, 2019, 177, 107382.
27 Wu G, Wang X, Wang Y T, et al. Thin-Walled Structures, 2024, 205, 112514.
28 Kılıç N, Bedir S, Erdik A, et al. Materials & Design, 2014, 63, 427.
29 Yang S, Yu C, Kang Y B, et al. Journal of Vibration and Shock, 2021, 40(16), 1 (in Chinese).
杨姝, 于晨, 康玉彪, 等. 振动与冲击, 2021, 40(16), 1.
30 Scazzosi R, Giglio M, Manes A. Ceramics International, 2020, 46(15), 23760.
31 Wen Y K, Xu C, Wang S, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 45, 11.
32 Christian K, Bond I P, Trask R S. Journal of the Royal Society Interface, 2012, 9(69), 665.
[1] 董昊良, 李化建, 杨志强, 温家馨, 黄法礼, 王振, 易忠来. 混凝土冻融破坏机理及寿命预测方法[J]. 材料导报, 2024, 38(2): 22070123-11.
[2] 刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
[3] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[4] 马衍轩, 李梦瑶, 朱鹏飞, 徐亚茜, 于霞, 彭帅, 张鹏, 张颖锐, 王金华. 超高性能水泥基复合材料的多尺度设计与抗爆炸性能研究进展[J]. 材料导报, 2021, 35(17): 17190-17198.
[5] 刘超, 余伟航, 刘化威, 胡天峰, 胡慧敏. 再生砖骨料混凝土力学性能及破坏机理研究[J]. 材料导报, 2021, 35(13): 13025-13031.
[6] 白刚, 王里, 王芳, 程新睿. 3D打印UHPC的制备和力学性能试验研究[J]. 材料导报, 2021, 35(12): 12063-12069.
[7] 杨荣周, 徐颖, 陈佩圆, 王佳. SHPB劈裂试验下橡胶水泥砂浆的动态力学、能量特性及破坏机理试验研究[J]. 材料导报, 2021, 35(10): 10062-10072.
[8] 蒋招绣, 高光发. 碳化硼陶瓷的力学特性和破坏行为研究进展[J]. 材料导报, 2020, 34(23): 23064-23073.
[9] 樊凯, 卢雪峰, 张典堂, 钱坤. 针刺密度对三维碳毡增强树脂炭复合材料力学性能的影响[J]. 材料导报, 2019, 33(14): 2450-2455.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed