Preparation of Polymer-based Nanocomposites Using Surface Modified MXene 2-D Fillers and Their Percolation Threshold and Dielectric Response
TONG Yang1,2, WU Xinyu1, LIU Yang1, LIU Jiachen1,2,*, JU Shaoshuai1, Li Jungang1, Li Yuting1, HU Jifan1,*
1 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China 2 Shanxi Provincial Key Laboratory of Magnetic and Electric Functional Materials and the Applications, Taiyuan University of Science and Technology, Taiyuan 030024, China
Abstract: A nanocomposite with high dielectric constant based onP(VDF-TrFE) copolymer matrix was fabricated in the present work by using conductive two-dimensional (2-D) titanium carbide (Ti3C2) MXene with surface modification as filler. The produced dielectric nanocomposites were flexible and exhibited a dense and uniform microstructure. With a small amount of fillers, the extremely large specific surface area and high surface activity of the filler promoted an increase in nucleation density and crystallization rate, leading to a high crystallinity of 87.7% for the nanocomposites with a filler content of 1.5wt%. It was identified that the percolation threshold of Ti3C2 in P(VDF-TrFE) was dependent on the frequency of electric field, exhibiting a percolation threshold of 11.9wt% under a 100 Hz alternating electric field, significantly lower than that of composites using spherical conductor fillers reported previously. With a filler content of 10wt%, the nanocomposites exhibited high dielectric constant of >3 100 at 100 Hz associated with a loss of 0.8 far lower than other reported high-dielectric constant composites in relevant publications at the same frequency. The results of this work implicate 2-D MXenes as promising candidate for fabrication of foldable/wearable capacitors, sensors, and energy storage devices.
同阳, 武鑫雨, 刘洋, 刘嘉辰, 琚绍帅, 李俊钢, 李雨婷, 胡季帆. 基于表面改性MXene二维填料的铁电聚合物纳米复合材料电介质制备及其逾渗阈值/介电响应研究[J]. 材料导报, 2025, 39(13): 25010199-7.
TONG Yang, WU Xinyu, LIU Yang, LIU Jiachen, JU Shaoshuai, Li Jungang, Li Yuting, HU Jifan. Preparation of Polymer-based Nanocomposites Using Surface Modified MXene 2-D Fillers and Their Percolation Threshold and Dielectric Response. Materials Reports, 2025, 39(13): 25010199-7.
1 Barber P, Balasubramanian S, Anguchamy Y, et al.Materials, 2009, 2(4), 1697. 2 Prateek, Thakur V K, Gupta R K.Chemical Reviews, 2016, 116(7), 4260. 3 Ahmadpoor P, Nateri A S, Motaghitalab V.Journal of Applied Polymer Science, 2013, 130(1), 78. 4 Jung C S, Lee I T, Jang P W, et al.Journal of Nanoscience and Nanotechnology, 2012, 12(4), 3326. 5 Kumar B, Kim S W.Nano Energy, 2012, 1(3), 342. 6 Yoon M S, Mahmud I, Ur S C.Ceramics International, 2013, 39(8), 8581. 7 Castro M, Lu J, Bruzaud S, et al.Carbon, 2009, 47(8), 1930. 8 Luo B, Wang X, Wang Y, et al.Journal of Materials Chemistry A, 2014, 2(2), 510. 9 You L, Liu B, Hua H, et al.Nanomaterials, 2023, 13(21), 2842. 10 Wang H Y, Xian L D, Shang T R, et al.Materials Reports, 2024, 38(13), 241 (in Chinese). 王海燕, 咸龙帝, 尚天蓉, 等. 材料导报, 2024, 38(13), 241. 11 Dang Z M, Yuan J K, Zha J W, et al.Progress in Materials Science, 2012, 57(4), 660. 12 Zhang L I N, Cheng Z Y.Journal of Advanced Dielectrics, 2011, 1(4), 389. 13 Nan C W, Shen Y, Ma J.Annual Review of Materials Research, 2010, 40(1), 131. 14 Sebastian M T, Jantunen H.International Journal of Applied Ceramic Technology, 2010, 7(4), 415. 15 Zhang L, Liu Z, Lu X, et al.Nano Energy, 2016, 26, 550. 16 Wang G, Deng Y, Xiang Y, et al.Advanced Functional Materials, 2008, 18(17), 2584. 17 Dang Z M, Wang H Y, Peng B, et al.Journal of Electroceramics, 2008, 21, 381. 18 Deng Y, Zhang Y, Xiang Y, et al.Journal of Materials Chemistry, 2009, 19(14), 2058. 19 Zhang L, Wu P, Li Y, et al.Composites Part B, 2014, 56, 284. 20 Bai Y, Cheng Z Y, Bharti V, et al.Applied Physics Letters, 2000, 76(25), 3804. 21 Zhang L, Shan X, Wu P, et al.Ferroelectrics, 2010, 405(1), 92. 22 Zhang L, Shan X, Wu P, et al.Applied Physics A, 2012, 107, 597. 23 Sandler J K W, Kirk J E, Kinloch I A, et al.Polymer, 2003, 44(19), 5893. 24 Dang Z M, Nan C W, Xie D, et al.Applied Physics Letters, 2004, 85(1), 97. 25 Han Z, Fina A.Progress in Polymer Science, 2011, 36(7), 914. 26 Toker D, Azulay D, Shimoni N, et al.Physical Review B, 2003, 68(4), 041403. 27 Panwar V, Mehra R M, Park J O, et al.Journal of Applied Polymer Science, 2012, 125(S1), E610. 28 Li Q, Xue Q, Hao L, et al.Composites Science and Technology, 2008, 68(10-11), 2290. 29 Yuan J K, Yao S H, Dang Z M, et al.The Journal of Physical Chemistry C, 2011, 115(13), 5515. 30 He F, Lau S, Chan H L, et al.Advanced Materials, 2009, 21(6), 710. 31 Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Jenny Stanford Publishing, Singapore, 2023, pp. 15. 32 Come J, Naguib M, Rozier P, et al.Journal of the Electrochemical Society, 2012, 159(8), A1368. 33 Hu J, Xu B, Ouyang C, et al.The Journal of Physical Chemistry C, 2014, 118(42), 24274. 34 Sui G, Jana S, Zhong W H, et al.Acta Materialia, 2008, 56(10), 2381. 35 Dang Z M, Wang L, Yin Y I, et al.Advanced Materials, 2007, 19(6), 852. 36 Wu C, Huang X, Xie L, et al.Journal of Materials Chemistry, 2011, 21(44), 17729. 37 Li W, Yu L, Zhu Y, et al.Journal of Applied Polymer Science, 2010, 116(2), 663. 38 Zong J D.Guangdong Chemical Industry, 2020, 47(19), 4 (in Chinese). 宗敬东. 广东化工, 2020, 47(19), 4. 39 Yousefi N, Sun X, Lin X, et al.Advanced Materials, 2014, 26(31), 5480. 40 Zheng W, Lu X, Wang W, et al.Physica Status Solidi A, 2010, 207(8), 1870. 41 Tu S, Jiang Q, Zhang X, et al.ACS Nano, 2018, 12(4), 3369. 42 Han M, Shuck C E, Rakhmanov R, et al.ACS Nano, 2020, 14(4), 5008. 43 Hantanasirisakul K, Alhabeb M, Lipatov A, et al.Chemistry of Materials, 2019, 31(8), 2941.