Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24040053-9    https://doi.org/10.11896/cldb.24040053
  高分子与聚合物基复合材料 |
负载MXene纳米片的冻融水凝胶的制备及防治术后胰瘘的研究
刘皓珩1, 郭倩如1,2, 田锦1, 门杰1, 李可洲1,3,*
1 西南交通大学医学院,成都 610031
2 西南交通大学材料科学与工程学院,成都 610031
3 四川大学华西医院胰腺外科,成都 610041
Preparation of Freeze-Thaw Hydrogels Loaded with MXene Nanosheets and Their Prevention and Treatment of Postoperative Pancreatic Fistula
LIU Haoheng1, GUO Qianru1,2, TIAN Jin1, MEN Jie1, LI Kezhou1,3,*
1 College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
2 School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
3 Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
下载:  全 文 ( PDF ) ( 43617KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 术后胰瘘(Postoperative pancreatic fistula,POPF)是胰腺切除术后最常见和最严重的并发症之一,会导致住院时间延长、医疗保健成本增加以及引发潜在的危及生命的并发症。目前在临床上用于防治术后胰瘘的胰管支架、密封胶和聚乙醇酸毡等材料虽然具有一定的作用,但是仍面临感染及愈合速率慢等问题。受到创面水凝胶敷料的启发,制备一种负载MXene纳米片的PVA-CS-MXene冻融水凝胶,其具有良好的力学性能、吸水溶胀行为、生物降解性能和细胞相容性;在血液相容性实验中,水凝胶材料的溶血率低于5%,证明其具有良好的血液相容性;抗菌实验证明PVA-CS水凝胶具有一定的抗菌性能,并且通过MXene的载入显著地提升了水凝胶的抗菌性能。建立大鼠术后胰瘘模型,通过残余胰腺组织创面愈合实验,证明PVA-CS-MXene冻融水凝胶能抑制创面炎症反应,促进残余胰腺组织创面愈合,从而有效防治术后胰瘘。实验结果表明,PVA-CS-MXene冻融水凝胶有望成为胰腺切除术后胰瘘防治的一种有前景的材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘皓珩
郭倩如
田锦
门杰
李可洲
关键词:  冻融水凝胶  MXene  抗炎  抗菌  创面愈合  术后胰瘘    
Abstract: Postoperative pancreatic fistula (POPF) is one of the most common and serious complications after pancreatectomy, resulting in prolonged hospital stays, increased healthcare costs and potentially life-threatening complications. At present, pancreatic duct stents, sealant and polyglycolic acid felt used in clinical prevention and treatment of postoperative pancreatic fistula have certain effects, but they still face problems such as infection and slow healing rate. Inspired by the wound hydrogel dressing, in this study, we prepared PVA-CS-MXene freeze-thaw hydrogel loaded with MXene nanosheets, which has good mechanical properties, swelling behavior, biodegradability and cytocompatibility. In hemocompatibility experiments, the hemolysis rate of hydrogel materials was less than 5%, which proved that PVA-CS hydrogels had good hemocompatibility. Antimicrobial experiments showed that PVA-CS hydrogels had certain antibacterial properties, and the antibacterial properties of the hydrogels were significantly improved by MXene loading. A rat model of postoperative pancreatic fistula was established and wound healing experiment of the residual pancreatic tissue proved that PVA-CS-MXene freeze-thaw hydrogel could inhibit the inflammatory response of the wound and promote the wound healing of the residual pancreatic tissue, so as to effectively prevent and treat postoperative pancreatic fistula. The experimental results show that PVA-CS-MXene freeze-thaw hydrogel is expected to be a promising material for the prevention and treatment of pancreatic fistula after pancreatectomy.
Key words:  freeze-thaw hydrogel    MXene    anti-inflammatory    antibacterial    wound healing    postoperative pancreatic fistula
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  R318.08  
基金资助: 四川省重点研发项目(2023YFS0182)
通讯作者:  *李可洲,博士,四川大学华西医院胰腺外科教授、西南交通大学医学院兼职教授、硕士研究生导师。目前主要从事胰腺外科临床工作及应用基础研究。kzlchina@hotmail.com   
作者简介:  刘皓珩,西南交通大学医学院硕士研究生,在李可洲教授的指导下进行研究。目前主要研究领域为水凝胶预防术后胰瘘。
引用本文:    
刘皓珩, 郭倩如, 田锦, 门杰, 李可洲. 负载MXene纳米片的冻融水凝胶的制备及防治术后胰瘘的研究[J]. 材料导报, 2025, 39(9): 24040053-9.
LIU Haoheng, GUO Qianru, TIAN Jin, MEN Jie, LI Kezhou. Preparation of Freeze-Thaw Hydrogels Loaded with MXene Nanosheets and Their Prevention and Treatment of Postoperative Pancreatic Fistula. Materials Reports, 2025, 39(9): 24040053-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040053  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24040053
1 Miller B C, Christein J D, Behrman S W, et al. Hpb, 2013, 15(10), 781.
2 Vallance A E, Young A L, Macutkiewicz C, et al. Hpb, 2015, 17(11), 1040.
3 Bassi C, Buchler M W, Fingerhut A, et al. Annals of Surgery, 2015, 261(4), E99.
4 Zhang H, Zhu F, Shen M, et al. British Journal of Surgery, 2015, 102(1), 4.
5 Suzuki Y, Fujino Y, Tanioka Y, et al. British Journal of Surgery, 1999, 86(5), 608.
6 Fong Y. Archives of Surgery, 2003, 138(12), 1315.
7 Allen P J. New England Journal of Medicine, 2014, 371(9), 875.
8 Malleo G, Pulvirenti A, Marchegiani G, et al. Langenbecks Archives of Surgery, 2014, 399(7), 801.
9 Orci L A, Oldani G, Berney T, et al. Hpb, 2014, 16(1), 3.
10 Jang J Y, Shin Y C, Han Y, et al. Jama Surgery, 2017, 152(2), 150.
11 Kaneko H, Kokuryo T, Yokoyama Y, et al. Surgery, 2017, 161(6), 1561.
12 Kim S R, Yi H J, Lee Y N, et al. Scientific Reports, 2018, 8, 1.
13 Rafique A, Zia K M, Zuber M, et al. International Journal of Biological Macromolecules, 2016, 87, 141.
14 Kamoun E A, Kenawy E R S, Chen X. Journal of Advanced Research, 2017, 8(3), 217.
15 Abdel-Mohsen A M, Aly A S, Hrdina R, et al. Journal of Polymers and the Environment, 2011, 19(4), 1005.
16 Naguib M, Kurtoglu M, Presser V, et al. Advanced Materials, 2011, 23(37), 4248.
17 Chen K, Qiu N, Deng Q, et al. ACS Biomaterials Science & Engineering, 2017, 3(10), 2293.
18 Li Y, Han M, Cai Y, et al. Biomaterials Science, 2022, 10(4), 1068.
19 Salim O, Mahmoud K A, Pant K K, et al. Materials Today Chemistry, 2019, 14, 100191.
20 Uchida Y, Masui T, Nakano K, et al. British Journal of Surgery, 2019, 106(5), 616.
21 Tanaka T, Kuroki T, Adachi T, et al. Journal of Gastroenterology, 2013, 48(9), 1081.
22 Mamada H, Kemmochi A, Tamura T, et al. Polymers for Advanced Technologies, 2022, 33(1), 125.
23 Zhao W, Peng J, Wang W, et al. Small, 2019, 15(18), 1901351.
24 Li S N, Yu Z R, Guo B F, et al. Nano Energy, 2021, 90, 106502.
25 Guo S, Ren Y, Chang R, et al. ACS Applied Materials & Interfaces, 2022, 14(30), 34455.
26 Hafezi-Nejad N, Fishman E K, Zaheer A. Abdominal Radiology, 2018, 43(2), 476.
27 Chiba N, Abe Y, Yokozuka K, et al. Journal of Gastrointestinal Surgery, 2019, 23(3), 613.
28 Kemmochi A, Tamura T, Shimizu Y, et al. Journal of Hepato-Biliary-Pancreatic Sciences, 2022, 29(5), 595.
29 Liu W, Gao R, Yang C, et al. Science Advances, 2022, 8(27), eabn7006.
30 Zhao X, Pei D, Yang Y, et al. Advanced Functional Materials, 2021, 31(18), 2009442.
[1] 王鑫瑶, 韦永韬, 吴静, 王显彬, 杨文超, 湛永钟. XPS在新型齿科医用材料研究中的应用[J]. 材料导报, 2025, 39(5): 24100162-11.
[2] 王振峰, 伞宏赡, 田萌萌, 徐志超, 关意佳, 杨志波. 植入体表面光响应抗菌涂层的研究进展[J]. 材料导报, 2025, 39(3): 23100105-9.
[3] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[4] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[5] 史一涵, 贺建林, 丁晟, 杨焜, 侯可心, 李钒. 碳材料用于创伤止血的研究进展[J]. 材料导报, 2024, 38(9): 22090162-13.
[6] 李鹏程, 魏嘉佳, 孟昊天, 王文轩, 李佳峻, 李达, 涂秋芬. 静电自组装法构建抗菌抗凝涂层的研究[J]. 材料导报, 2024, 38(14): 23020101-9.
[7] 姜宇, 杨蓉, 张乾伟, 樊潮江, 董鑫, 蒋百铃, 燕映霖. 功能化MXene在锂硫电池中应用研究进展[J]. 材料导报, 2024, 38(12): 22100251-9.
[8] 李亮, 刘淑萍, 裴斐斐, 杨雷锋, 刘让同. 载中药聚乳酸多孔纳米纤维医用敷料[J]. 材料导报, 2024, 38(10): 22080169-7.
[9] 黄怡萱, 于鹏, 周正难, 王珍高, 宁成云. 导电聚合物基抗菌复合材料的合成及生物医用研究进展[J]. 材料导报, 2023, 37(9): 21090198-9.
[10] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[11] 王磊, 于新海, 袁帅帅, 姚馨淇, 李传东. 石墨烯及MXenes在氢气传感器中的应用研究进展[J]. 材料导报, 2023, 37(21): 22040076-11.
[12] 刘茜, 梁晓正, 杨华明. 黑滑石的矿物学特征及加工与应用研究进展[J]. 材料导报, 2023, 37(21): 22030167-10.
[13] 滕桂香, 杨怡凡, 侯苏童, 姚慧, 张春. 一步法制备PLA/PDA/Ag多孔抗菌纳米纤维膜及其
促进伤口愈合作用研究
[J]. 材料导报, 2023, 37(18): 23080053-6.
[14] 程培雪, 马迅, 刘平, 王静静, 马凤仓, 张柯, 陈小红, 刘剑楠, 李伟. 磁控溅射纳米银含量对钛种植体抗菌性的影响[J]. 材料导报, 2023, 37(16): 22030032-6.
[15] 蒋尊宇, 盛扬, 孙一新, 李坚, Mark Bradley, 张嵘. 包载荧光共轭聚合物的阳离子聚合物纳米微球的合成及协同抗菌效果研究[J]. 材料导报, 2023, 37(14): 22010234-9.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed