Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 25010199-7    https://doi.org/10.11896/cldb.25010199
  无机非金属及其复合材料 |
基于表面改性MXene二维填料的铁电聚合物纳米复合材料电介质制备及其逾渗阈值/介电响应研究
同阳1,2, 武鑫雨1, 刘洋1, 刘嘉辰1,2,*, 琚绍帅1, 李俊钢1, 李雨婷1, 胡季帆1,*
1 太原科技大学材料科学与工程学院,太原 030024
2 太原科技大学磁电功能材料及应用山西省重点实验室,太原 030024
Preparation of Polymer-based Nanocomposites Using Surface Modified MXene 2-D Fillers and Their Percolation Threshold and Dielectric Response
TONG Yang1,2, WU Xinyu1, LIU Yang1, LIU Jiachen1,2,*, JU Shaoshuai1, Li Jungang1, Li Yuting1, HU Jifan1,*
1 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2 Shanxi Provincial Key Laboratory of Magnetic and Electric Functional Materials and the Applications, Taiyuan University of Science and Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 13286KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以一种表面改性MXene二维导体材料Ti3C2为填料,以P(VDF-TrFE)铁电共聚物为基体,采用溶液流延和热压工艺成功制备了具有高介电常数的柔性纳米复合材料电介质。制备的复合材料显示出致密而均匀的微观结构,少量添加时填料极大的比表面积和较高的表面活性促使晶核密度和结晶速率提升,当填料含量为1.5%(质量分数)时结晶度提升至87.7%;材料的逾渗阈值与电场频率相关,在100 Hz交变电场下逾渗阈值为11.9%,显著小于采用近似球形导体填料的复合材料;当二维填料含量为10%(质量分数)时,该复合材料的介电常数超过3 100、损耗仅为0.8,远小于文献中报道的同类复合材料。研究结果表明,以具有二维结构的MXenes材料为填料制备的纳米复合材料有望作为可折叠/可穿戴电容器、传感器、储能装置等器件中所需的高性能电介质发挥重要作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
同阳
武鑫雨
刘洋
刘嘉辰
琚绍帅
李俊钢
李雨婷
胡季帆
关键词:  纳米电介质  复合材料  Mxene  逾渗阈值    
Abstract: A nanocomposite with high dielectric constant based onP(VDF-TrFE) copolymer matrix was fabricated in the present work by using conductive two-dimensional (2-D) titanium carbide (Ti3C2) MXene with surface modification as filler. The produced dielectric nanocomposites were flexible and exhibited a dense and uniform microstructure. With a small amount of fillers, the extremely large specific surface area and high surface activity of the filler promoted an increase in nucleation density and crystallization rate, leading to a high crystallinity of 87.7% for the nanocomposites with a filler content of 1.5wt%. It was identified that the percolation threshold of Ti3C2 in P(VDF-TrFE) was dependent on the frequency of electric field, exhibiting a percolation threshold of 11.9wt% under a 100 Hz alternating electric field, significantly lower than that of composites using spherical conductor fillers reported previously. With a filler content of 10wt%, the nanocomposites exhibited high dielectric constant of >3 100 at 100 Hz associated with a loss of 0.8 far lower than other reported high-dielectric constant composites in relevant publications at the same frequency. The results of this work implicate 2-D MXenes as promising candidate for fabrication of foldable/wearable capacitors, sensors, and energy storage devices.
Key words:  nanodielectrics    composites    MXene    percolation threshold
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TK02  
基金资助: 国家自然科学基金(62201376);山西省回国留学人员科研资助项目(2023-153);山西省基础研究计划项目(202303021212215)
通讯作者:  *刘嘉辰,太原科技大学材料科学与工程学院讲师、硕士研究生导师。目前主要从事复合介电储能材料、介电传感器等研究工作。jiachenliu@tyust.edu.cn
胡季帆,太原科技大学材料科学与工程学院教授、博士研究生导师。目前主要从事铁电、气敏、储氢、永磁等多种功能材料的研究工作。hujifan@tyust.edu.cn   
作者简介:  同阳,太原科技大学材料科学与工程学院副教授、硕士研究生导师。长期从事功能材料方向的科研与教学工作,目前主要从事复合介电储能材料、介电传感器等研究工作。
引用本文:    
同阳, 武鑫雨, 刘洋, 刘嘉辰, 琚绍帅, 李俊钢, 李雨婷, 胡季帆. 基于表面改性MXene二维填料的铁电聚合物纳米复合材料电介质制备及其逾渗阈值/介电响应研究[J]. 材料导报, 2025, 39(13): 25010199-7.
TONG Yang, WU Xinyu, LIU Yang, LIU Jiachen, JU Shaoshuai, Li Jungang, Li Yuting, HU Jifan. Preparation of Polymer-based Nanocomposites Using Surface Modified MXene 2-D Fillers and Their Percolation Threshold and Dielectric Response. Materials Reports, 2025, 39(13): 25010199-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25010199  或          https://www.mater-rep.com/CN/Y2025/V39/I13/25010199
1 Barber P, Balasubramanian S, Anguchamy Y, et al.Materials, 2009, 2(4), 1697.
2 Prateek, Thakur V K, Gupta R K.Chemical Reviews, 2016, 116(7), 4260.
3 Ahmadpoor P, Nateri A S, Motaghitalab V.Journal of Applied Polymer Science, 2013, 130(1), 78.
4 Jung C S, Lee I T, Jang P W, et al.Journal of Nanoscience and Nanotechnology, 2012, 12(4), 3326.
5 Kumar B, Kim S W.Nano Energy, 2012, 1(3), 342.
6 Yoon M S, Mahmud I, Ur S C.Ceramics International, 2013, 39(8), 8581.
7 Castro M, Lu J, Bruzaud S, et al.Carbon, 2009, 47(8), 1930.
8 Luo B, Wang X, Wang Y, et al.Journal of Materials Chemistry A, 2014, 2(2), 510.
9 You L, Liu B, Hua H, et al.Nanomaterials, 2023, 13(21), 2842.
10 Wang H Y, Xian L D, Shang T R, et al.Materials Reports, 2024, 38(13), 241 (in Chinese).
王海燕, 咸龙帝, 尚天蓉, 等. 材料导报, 2024, 38(13), 241.
11 Dang Z M, Yuan J K, Zha J W, et al.Progress in Materials Science, 2012, 57(4), 660.
12 Zhang L I N, Cheng Z Y.Journal of Advanced Dielectrics, 2011, 1(4), 389.
13 Nan C W, Shen Y, Ma J.Annual Review of Materials Research, 2010, 40(1), 131.
14 Sebastian M T, Jantunen H.International Journal of Applied Ceramic Technology, 2010, 7(4), 415.
15 Zhang L, Liu Z, Lu X, et al.Nano Energy, 2016, 26, 550.
16 Wang G, Deng Y, Xiang Y, et al.Advanced Functional Materials, 2008, 18(17), 2584.
17 Dang Z M, Wang H Y, Peng B, et al.Journal of Electroceramics, 2008, 21, 381.
18 Deng Y, Zhang Y, Xiang Y, et al.Journal of Materials Chemistry, 2009, 19(14), 2058.
19 Zhang L, Wu P, Li Y, et al.Composites Part B, 2014, 56, 284.
20 Bai Y, Cheng Z Y, Bharti V, et al.Applied Physics Letters, 2000, 76(25), 3804.
21 Zhang L, Shan X, Wu P, et al.Ferroelectrics, 2010, 405(1), 92.
22 Zhang L, Shan X, Wu P, et al.Applied Physics A, 2012, 107, 597.
23 Sandler J K W, Kirk J E, Kinloch I A, et al.Polymer, 2003, 44(19), 5893.
24 Dang Z M, Nan C W, Xie D, et al.Applied Physics Letters, 2004, 85(1), 97.
25 Han Z, Fina A.Progress in Polymer Science, 2011, 36(7), 914.
26 Toker D, Azulay D, Shimoni N, et al.Physical Review B, 2003, 68(4), 041403.
27 Panwar V, Mehra R M, Park J O, et al.Journal of Applied Polymer Science, 2012, 125(S1), E610.
28 Li Q, Xue Q, Hao L, et al.Composites Science and Technology, 2008, 68(10-11), 2290.
29 Yuan J K, Yao S H, Dang Z M, et al.The Journal of Physical Chemistry C, 2011, 115(13), 5515.
30 He F, Lau S, Chan H L, et al.Advanced Materials, 2009, 21(6), 710.
31 Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Jenny Stanford Publishing, Singapore, 2023, pp. 15.
32 Come J, Naguib M, Rozier P, et al.Journal of the Electrochemical Society, 2012, 159(8), A1368.
33 Hu J, Xu B, Ouyang C, et al.The Journal of Physical Chemistry C, 2014, 118(42), 24274.
34 Sui G, Jana S, Zhong W H, et al.Acta Materialia, 2008, 56(10), 2381.
35 Dang Z M, Wang L, Yin Y I, et al.Advanced Materials, 2007, 19(6), 852.
36 Wu C, Huang X, Xie L, et al.Journal of Materials Chemistry, 2011, 21(44), 17729.
37 Li W, Yu L, Zhu Y, et al.Journal of Applied Polymer Science, 2010, 116(2), 663.
38 Zong J D.Guangdong Chemical Industry, 2020, 47(19), 4 (in Chinese).
宗敬东. 广东化工, 2020, 47(19), 4.
39 Yousefi N, Sun X, Lin X, et al.Advanced Materials, 2014, 26(31), 5480.
40 Zheng W, Lu X, Wang W, et al.Physica Status Solidi A, 2010, 207(8), 1870.
41 Tu S, Jiang Q, Zhang X, et al.ACS Nano, 2018, 12(4), 3369.
42 Han M, Shuck C E, Rakhmanov R, et al.ACS Nano, 2020, 14(4), 5008.
43 Hantanasirisakul K, Alhabeb M, Lipatov A, et al.Chemistry of Materials, 2019, 31(8), 2941.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 祝林, 王帅, 游龙, 刘娟, 逄显娟, 陆焕焕, 宋晨飞, 张永振. Mo2BC增强Al基复合材料摩擦学性能研究[J]. 材料导报, 2025, 39(9): 24010247-6.
[3] 刘皓珩, 郭倩如, 田锦, 门杰, 李可洲. 负载MXene纳米片的冻融水凝胶的制备及防治术后胰瘘的研究[J]. 材料导报, 2025, 39(9): 24040053-9.
[4] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[5] 脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
[6] 崔岩, 李硕, 曹雷刚, 杨越, 刘园. 颗粒级配对55%SiC/Al复合材料力学性能和尺寸稳定性的影响[J]. 材料导报, 2025, 39(8): 23120157-7.
[7] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[8] 孙国栋, 吕龙飞, 解静, 贾研, 康凯, 郑斌, 尹昭怡, 田清来. 碳纤维增强复合材料阻尼性能的研究进展[J]. 材料导报, 2025, 39(6): 24010168-11.
[9] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[10] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[11] 姜文平, 庞兴志, 何娟霞, 杨文超, 湛永钟. 骨修复用钛合金-羟基磷灰石复合材料的制备工艺及性能综述[J]. 材料导报, 2025, 39(5): 24090227-14.
[12] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[13] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[14] 王成海, 韩昌报, 崔雅楠, 严辉, 蒋荃. 高孔隙率水化硅酸钙的合成及对水泥基复合材料保温隔热性能的影响[J]. 材料导报, 2025, 39(13): 24060010-7.
[15] 刘泰山, 黄睿, 王首豪, 李瑞珍, 郑金煌. 超高温陶瓷改性碳/碳复合材料力学性能研究综述[J]. 材料导报, 2025, 39(12): 24120162-10.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed