Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24040106-14    https://doi.org/10.11896/cldb.24040106
  无机非金属及其复合材料 |
氯盐环境下钢筋混凝土腐蚀机理及防腐蚀技术研究进展
陈云*, 郑文博, 付前旺
海南大学土木建筑工程学院,海口 570228
Research Progress on Corrosion Mechanism and Corrosion Prevention Technology of Reinforced Concrete Under Chloride Erosion Environment
CHEN Yun*, ZHENG Wenbo, FU Qianwang
College of Civil Engineering and Architecture, Hainan University, Haikou 570228, China
下载:  全 文 ( PDF ) ( 18244KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为深化对钢筋混凝土结构在氯盐环境下耐久性能演变机制的认识,本文系统阐述了氯化物侵蚀作用下钢筋混凝土腐蚀机理、钢混界面粘结性能演变规律及其粘结强度本构模型、混凝土裂缝的产生及扩展,归纳了梁、柱构件力学性能演变规律的典型试验结果,总结了目前的主要防腐蚀技术与方法。结果表明:电加速腐蚀试验和拉拔试验的钢混界面粘结性能变化规律,以及钢筋混凝土构件的腐蚀试验与承载力试验的分阶段进行,都忽略了实际钢筋混凝土结构的受力特点,且腐蚀过程与自然腐蚀显著不同,应考虑真实环境与材料特性复杂多变的特点。防腐蚀的技术主要是基于水泥基材料的改善、对钢筋的保护及电化学腐蚀控制技术。水泥基材料的改善意味着降低孔隙率和孔隙之间的连通性,以避免氯化物向钢筋转移。通过添加辅助性胶凝材料或在混凝土内掺入纤维来提高混凝土密实度,通常用纤维增强聚合物(FRP)筋替代钢筋、在钢筋表面使用防护涂层和使用合金钢等,电化学腐蚀控制包括阴极保护和电化学氯离子萃取。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈云
郑文博
付前旺
关键词:  氯盐  粘结性能  力学性能  纤维增强聚合物筋  防护涂层  电化学    
Abstract: In order to deepen the understanding of the evolution mechanism of durability of reinforced concrete structures under chloride erosion environment, this paper systematically elaborates corrosion mechanism of reinforced concrete under chloride erosion, evolution law of bonding performance of steel-concrete interface and constitutive model of bonding strength, the generation and expansion of concrete cracks, concludes the typical test results of the evolution law of mechanical properties of beam and column members, and summarizes the current main anti-corrosion technologies and methods. The results show that the change law of the bonding performance of the steel-concrete interface in the electric accele-rated corrosion test and the pull-out test, as well as the corrosion test and the bearing capacity test of the reinforced concrete members, are carried out in stages, all of which ignore the stress characteristics of the actual reinforced concrete structure, and the corrosion process adopted in test is significantly different from the service corrosion. The complex and changeable characteristics of the real environment and material properties should not be ignored. Prevention corrosion methods are mainly based on the improvement of the cementitious matrix and the protection of the steel bar. The former means that the porosity and the connectivity between the pores are reduced to prevent the transfer of chloride to the steel bar. By adding cementitious materials or fibers into concrete to improve the compactness of concrete, steel bars are reinforced with fiber-reinforced polymer (FRP) bars, protective coatings or alloy steel on the surface of steel bars to protect steel bars. Electrochemical corrosion control includes cathodic protection and electrochemical chloride ion extraction.
Key words:  chloride    bond performance    mechanical property    fiber reinforced polymer bar    protective coating    electrochemistry
发布日期:  2025-05-29
ZTFLH:  TU528  
  TB332  
基金资助: 国家自然科学基金(52378504;51968020);海南省重点研发计划项目(ZDYF2021SHFZ070)
通讯作者:  *陈云,教授,博士研究生导师,海南大学土木建筑工程学院副院长。目前主要从事热带海岛湿热气候环境下既有工程结构的耐久性和抗震性能评估、高性能土木工程材料等研究。chenyunhappy@hainanu.edu.cn   
引用本文:    
陈云, 郑文博, 付前旺. 氯盐环境下钢筋混凝土腐蚀机理及防腐蚀技术研究进展[J]. 材料导报, 2025, 39(11): 24040106-14.
CHEN Yun, ZHENG Wenbo, FU Qianwang. Research Progress on Corrosion Mechanism and Corrosion Prevention Technology of Reinforced Concrete Under Chloride Erosion Environment. Materials Reports, 2025, 39(11): 24040106-14.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040106  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24040106
1 Robles Kevin Paolo V, Gucunski Nenad, Seong-Hoon Kee. Construction and Building Materials, 2024, 411, 134512.
2 Eline Vandecruys, Menno van de Velde, Edwin Reynders, et al. Engineering Structures, 2023, 293, 116553.
3 El Sherik. Trends in Oil and Gas Corrosion Research and Technologies, Woodhead Publishing, UK, 2017, pp. 30.
4 Baorong Hou, Xiaogang Li, Xiumin Ma, et al. npj Materials Degradation, 2017, 1, 29.
5 Polder R B, Peelen W H, Courage W. Materials and Corrosion, 2012, 63, 1147.
6 Mark Alexander, Hans Beushausen. Cement and Concrete Research, 2019, 122, 17.
7 Fangjie Chen, Hassan Baji, Chunqing Li. Construction and Building Materials, 2018, 163, 681.
8 Van Steen C, Van Beirendonck T, Vrijdaghs R, et al. Engineering Structures, 2023, 294, 116624.
9 Kasιm Mermerdas, Erhan Güneyisi. Construction and Building Materials, 2023, 382, 131288.
10 Gomez-Luna G F, Lopez-Calvo H Z, Bremner T W, et al. Construction and Building Materials, 2023, 385, 131514.
11 Jixi Chen, Jinqing Jia, Mengyu Zhu. Construction and Building Materials, 2024, 411, 134219.
12 Shiwen Han, Chao Fan, Jinping Ou. Engineering Structures, 2023, 278, 115520.
13 Yongqi Liu, Jinjie Shi. Cement and Concrete Composites, 2024, 147, 105419.
14 Brigitte Goffin, Nemkumar Banthia, Noboru Yonemitsu. Construction and Building Materials, 2020, 263, 120162.
15 Xing Ming, Qing Liu, Miaomiao Wang, et al. Cement and Concrete Composites, 2023, 136, 104898.
16 Fangcheng Qin, Haiquan Qi, Zhengbing Meng, et al. Materials Reports, 2022, 36(6), 158 (in Chinese).
秦芳诚, 亓海全, 孟征兵, 等. 材料导报, 2022, 36(6), 158.
17 Du Pan, Ditao Niu, Zongjin Li. Construction and Building Materials, 2023, 389, 131800.
18 Tianyi Zhang, Wei Liu, Baojun Dong, et al. Corrosion Science, 2023, 216, 111107.
19 Qingyang Ren, Honghua Jin, Songqiang Xiao, et al. Journal of Traffic and Transportation Engineering, 2022, 22(5), 1637(in Chinese).
任青阳, 靳红华, 肖宋强, 等. 交通运输工程学报, 2022, 22(5), 1637.
20 Tangwei Mi, JingJing Wang, Colum McCague, et al. Cement and Concrete Composites, 2023, 143, 105231.
21 Zhe Li, Zuquan Jin, Penggang Wang, et al. Construction and Building Materials, 2021, 279, 122432.
22 Tarun Morwal, Tushar Bansal, Ammar Azam, et al. Measurement, 2023, 218, 113102.
23 Fengyin Du, Zuquan Jin, Chuansheng Xiong, et al. Journal of Building Engineering, 2023, 78, 107753.
24 Nicolas ElJoukhadar, Farah Dameh, Stavroula Pantazopoulou. Engineering Structures, 2023, 275, 115251.
25 Yu Liu, Hong Hao, Yifei Hao, et al. Construction and Building Materials, 2022, 356, 129272.
26 Mengjia Liu, Liu Jin, Fengjuan Chen, et al. Engineering Structures, 2022, 256, 113939.
27 Pourbaix M. Corrosion Science, 1990, 30, 963.
28 Ivan Mikhailovich Kolesnikov, Choice Reviews Online, 2001, 39.
29 Hiroki Tamura, Corrosion Science, 2008, 50, 1872.
30 De La Fuente D, Díaz I, Alcántara J, et al. Materials and Corrosion, 2016, 67, 227.
31 Misawa T, Hashimoto K, Shimodaira S. Corrosion Science, 1974, 14, 131.
32 WalterJohn C, Dillmann P, L’Hostis V, et al. Corrosion Science, 2005, 47, 155.
33 Yang Liu, Xi Liu, Tao Wu, et al. Construction and Building Materials, 2023, 367, 130268.
34 Qiang Li, Ye Tian, Deming Fang, et al. Construction and Building Materials, 2023, 409, 133943.
35 El-Maaddawy T, Soudki K, Topper T. ACI structural journal, 2005, 102(4), 550.
36 Yufei Wu, Xuemei Zhao. Journal of Structural Engineering, 2013, 139, 1951.
37 Qian Feng, Visintin Phillip, Oehlers Deric J. Magazine of Concrete Research, 2016, 68, 768.
38 Yafei Ma, Zhongzhao Guo, Lei Wang, et al. Construction and Building Materials, 2017, 152, 240.
39 Jieqiong Wu, Xiaowang Zhang, Li Guo, et al. Construction and Building Materials, 2022, 357, 129338.
40 Van Steen C, Van Beirendonck T, Vrijdaghs R, et al. Engineering Structures, 2023, 294, 116624.
41 Ahmad Soraghi, Qindan Huang. Engineering Structures, 2021, 233, 111944.
42 Xiaoxu Huang, Yingwu Zhou, Xubin Zheng, et al. Composite Structures, 2023, 309, 116739.
43 ACI. Report on bond of steel reinforcing bars under cyclic loads, US, 2012.
44 ACI 318R-19, Building code requirements for structural concrete, American Concrete Institute, Farmington Hills, US, 2019.
45 Jia Sun, Zuquan Jin, Yiqi Qin. Journal of Building Materials, 2023, DOI:10. 3969/j. issn. 1007-9629. 2024. 04. 004 (in Chinese).
孙佳, 金祖权, 秦一琦. 建筑材料学报, 2023, DOI:10. 3969/j. issn. 1007-9629. 2024. 04. 004.
46 Weiliang Jin. Durability theory and design method of concrete structures under chloride environment, Science Press, 2011(in Chinese).
金伟良. 氯盐环境下混凝土结构耐久性理论与设计方法, 科学出版社, 2011.
47 Cheng Wen, Yuwan Tian, Zijie Mai, et al. Cement and Concrete Compo-sites, 2022, 129, 104510.
48 Woongik Hwang, Ki Yong Ann. Construction and Building Materials, 2023, 367, 130215.
49 Xuhui Zhang, Hongjuan Wang, Yue Zhang, et al. Construction and Building Materials, 2023, 387, 131591.
50 Xiaolu Guo, Huabing Li, Sijia Wang, Construction and Building Materials, 2022, 356, 129234.
51 Huapeng Chen, Yu Jiang, George Markou. Ocean Engineering, 2022, 262, 112155.
52 Angela Thompson, Knut Oberhagemann, Yuntong She. Geotextiles and Geomembranes, 2020, 48, 110.
53 Mette Geiker, Tobias Danner, Alexander Michel, et al. Construction and Building Materials, 2021, 286, 122801.
54 Molina F J, Alonso C, Andrade C. Materials and structures, 1993, 26, 532.
55 Rodriguez J, Ortega L M, Casal J, et al. Corrosion of reinforcement and service life of concrete structures, US, 1996, pp. 117.
56 Vidal T, Castel A, Franςois R. Cement and concrete research, 2004, 34, 165.
57 China Association for Engineering and Building Standardization. Standard for durability assess concrete structures:CECS220-2007, China Planning Press, 2007 (in Chinese).
中国工程建筑标准化协会.混凝土结构耐久性评定标准:CECS220-2007, 中国计划出版社, 2007.
58 Andrade C, Cesetti A, Mancini G, et al. Structural Concrete, 2016, 17, 533.
59 Doo Yeol Yoo, Wonsik Shin. Cement and Concrete Composites, 2021, 121, 104073.
60 Weipeng Feng, Anel Tarakbay, Shazim Ali Memon, et al. Construction and Building Materials, 2021, 289, 123165.
61 Michel Alexander, Henrik E. Sørensen, Mette Rica Geiker. Construction and Building Materials, 2021, 285, 122923.
62 Zhihao Jin, Chao Jiang, Xianglin Gu, et al. Construction and Building Materials, 2022, 350, 128867.
63 Xiaoyi Xu, Yuxi Zhao. Construction and Building Materials, 2021, 286, 122913.
64 Hafiza Fatima Zahid, Punyawut Jiradilok, Vikas Singh Kuntal, et al. Construction and Building Materials, 2021, 283, 122594.
65 Aditi Chauhan, Umesh Kumar Sharma. Engineering Fracture Mechanics, 2021, 248, 107719.
66 Tiao Wang, Chunhe Li, Jianjun Zheng, et al. Reliability Engineering and System Safety, 2023, 233, 109095.
67 Wulong Zhang, Raoul Franςois, Ruiyan Wang, et al. Construction and Building Materials, 2021, 274, 121987.
68 Amry Dasar, Dahlia Patah, Hidenori Hamada, et al. Structures, 2022, 46, 2031.
69 Lijun Hou, Yuhao Peng, Ran Xu, et al. Engineering Structures, 2021, 242, 112553.
70 Jun Wu, Jun Zhang, Jianghong Mao, et al. Journal of Harbin Engineering University, 2024, 45(5), 843(in Chinese).
吴俊, 张军, 毛江鸿, 等. 哈尔滨工程大学学报, 2024, 45(5), 843.
71 Jun Lai, Jian Cai, Zhiliang Zuo, et al. Journal of Southwest Jiaotong University, 2022, DOI:10. 3969/j. issn. 0258-2724. 20220038(in Chinese).
赖骏, 蔡健, 左志亮, 等. 西南交通大学学报, 2022, DOI:10. 3969/j. issn. 0258-2724. 20220038.
72 Stefania Imperatore, Armando Benenato, Simone Spagnuolo, et al. Construction and Building Materials, 2024, 411, 134581.
73 Hussein Nasser, Charlotte Van Steen, Lucie Vandewalle, et al. Construction and Building Materials, 2021, 286, 122773.
74 Hosein Naderpour, Farzad Ghasemi Meydansar, Mohammad Haji. Structures, 2022, 43, 1932.
75 Chuanqing Fu, Jin Huang, Zheng Dong, et al. Engineering Structures, 2023, 286, 116081.
76 Kuangyu Dai, Dagang Lu, Xiaohui Yu. Journal of Building Engineering, 2021, 44, 102615.
77 Na Li, Wangpeng Li, Yiyan Lu, et al. Composite Structures, 2023, 303, 116328.
78 Qi Cao, Xiaowei Li, Zhimin Wu. Structures, 2023, 58, 105396.
79 Mangat P S, Olalekan O O, Paul L. Cement and Concrete Composites, 2021, 115, 103823.
80 Hu Liu, Kaibin Li, Yongqiang Li, et al. Construction and Building Materials, 2024, 411, 134302.
81 Chananun Chaimongkhol, Satya Medepalli, Yuqian Zheng, et al. Construction and Building Materials, 2023, 399, 132554.
82 Wenrui Yang, Yuewen Huang, Zhiyi Tang, et al. Construction and Building Materials, 2024, 411, 134510.
83 Zheng Chen, Jiamin Yu, Yumei Nong, et al. Composite Structures, 2023, 322, 117439.
84 Wenchao Li, Min Zhou, Fusheng Liu, et al. Advances in Civil Engineering, 2021, 2021, 6676494.
85 Mehran Parvizi, Martin Noël, Jeison Vasquez, et al. Construction and Building Materials, 2020, 263, 120952.
86 Thomas Less, Aydin Demir, Halil Sezen a, et al. Construction and Building Materials, 2023, 366, 130176.
87 Hongfei Cao, Zhongda Lyu, Wei Dong, et al. Frontiers in Materials, 2022, 8, 821716.
88 Miri T, Seifzadeh D, Rajabalizadeh Z. Surface & Coatings Technology, 2024, 477, 130241.
89 Xiang Wang, Kun Gao, Caldona Eugene B, et al. International Journal of Biological Macromolecules, 2024, 257, 128755.
90 Adeel Moid Butt, Yunpeng Wang, Haitao Ma, et al. Surface & Coatings Technology, 2023, 473, 129977.
91 Ukashat Mamudu, Lukman Ahmed Omeiza, Progress in Organic Coa-tings, 2024, 186, 108025.
92 Mathewa Z P, Shamnamol G K, Greeshmac K P, et al. Corrosion Communications, 2023, 9, 36.
93 Pérez Claros Ernesto, Andrawes Bassem. Journal of Bridge Engineering, 2023, 28, 04023023.
94 Caraguay S J, Pereira T S, Giacomelli R O, et al. Surface & Coatings Technology, 2022, 437, 128371.
95 Lu Zhang, Ditao Niu, Bo Wen, et al. Construction and Building Materials, 2020, 258, 119564.
96 Huimin Ye, Xiutong Wang, Jianmin Niu, et al. Journal of Electroanaly-tical Chemistry, 2024, 953, 118013.
97 Menghao Liu, Bo Liu, Zeqing Ni, et al. Journal of Materials Research and Technology, 2024, 28, 1247.
98 Wei Li, Changke Yu, Weiying Huang, et al. Engineering Failure Analysis, 2023, 146, 107144.
99 Yunxia Yao, Yuanyuan Wei, Hongjun Li, et al. Applied Physics A, 2023, 129.
100 Bingbing Guo, Guofu Qiao, Ditao Niu, et al. International Journal of Electrochemical Science, 2020, 15, 5723.
101 Bingbing Guo, Guofu Qiao, Peng Han, et al. Journal of Building Engineering, 2022, 45, 103619.
102 Hu J Y, Zhang S S, Chen E, et al. Construction and Building Materials, 2022, 325, 126718.
103 Koleva D A, de Wit J H W, van Breugel K, et al. Journal of The Electrochemical Society, 2007, 154, 261.
104 Eichler T, Isecke B, Baβler R. Materials Corrosion, 2009, 60, 119.
105 Fei Wang, Jinxia Xu, Yi Xu, et al. Construction and Building Materials, 2020, 246, 118476.
106 Prasad Nisheeth Kr, Pathak A S, Kundu S, et al. Journal of Materials Research and Technology, 2021, 14, 582. .
107 Veronique Bouteiller, Yolaine Tissier, Elisabeth Marie-Victoire, et al. Construction and Building Materials, 2022, 351, 128931.
108 Le Li, Wenfeng Liu, Chunsheng Zhou, et al. Developments in the Built Environment, 2024, 17, 100364.
109 Ki Yong Ann, Jiseok Kim, Woongik Hwang. Construction and Building Materials, 2024, 411, 134477.
110 Zhe Li, Ning Li, Tiejun Zhao, et al. Construction and Building Materials, 2023, 369, 130617.
111 Chao Jiang, Chen Song, Xiang-Lin Gu, et al. Journal of Cleaner Production, 2023, 401, 136778.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 来仁杰, 辛俊伟, 王磊, 王旭东, 吕永涛. 电化学阻抗谱技术在水处理分离膜研究中的应用进展[J]. 材料导报, 2025, 39(8): 24040168-9.
[8] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[9] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[10] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[11] 袁均相, 刘国建, 刘志勇, 佘伟, 张云升. 合金钢在氯盐与硫酸盐作用下的腐蚀行为与机理[J]. 材料导报, 2025, 39(8): 24030019-7.
[12] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[13] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[14] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[15] 黄晗冰, 王培, 乔石, 马如龙, 郝振华, 舒永春, 何季麟. Cu-0.9Be-1.5Ni-0.04Y合金的摩擦磨损与电化学腐蚀性能研究[J]. 材料导报, 2025, 39(7): 24010241-8.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed