Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23020121-7    https://doi.org/10.11896/cldb.23020121
  无机非金属及其复合材料 |
钙溶蚀对混凝土抗氯离子侵蚀性能的影响
王少伟*, 肖焰钰, 朱平华, 严先萃, 夏群
常州大学城市建设学院,江苏 常州 213164
Effect of Calcium Leaching on Chloride Penetration Resistance of Concrete
WANG Shaowei*, XIAO Yanyu, ZHU Pinghua, YAN Xiancui, XIA Qun
School of Urban Construction, Changzhou University, Changzhou 213164, Jiangsu, China
下载:  全 文 ( PDF ) ( 10971KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 面板堆石坝和水下隧道等构筑物因渗漏水而容易遭受钙溶蚀病害,在复杂水环境下将面临钙溶蚀和氯离子侵蚀耦合作用下的混凝土耐久性问题。采用化学溶液浸泡法,对不同水灰比混凝土开展了耦合加速腐蚀试验,研究了钙溶蚀和氯离子侵蚀评价指标的时空演变规律,量化了钙溶蚀对混凝土抗氯离子侵蚀性能的影响,并对其微观机理进行了解释。结果表明:混凝土完全溶蚀后的氯离子扩散系数和氯离子含量分别是未溶蚀状态下的3.5倍左右和1.3~2.0倍;扩散系数在溶蚀区由表及里呈线性衰减趋势,但在深度越大处,氯离子含量的增大倍率也越大;溶蚀混凝土的氯离子吸附能力呈明显增强的趋势,且仍遵循线性吸附模型;混凝土水灰比越大,其抗溶蚀和抗氯离子侵蚀性能越差。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王少伟
肖焰钰
朱平华
严先萃
夏群
关键词:  混凝土  钙溶蚀  氯离子侵蚀  加速效应    
Abstract: Concrete structures such as concrete-faced rockfill dams and underwater tunnels are prone to calcium leaching due to water leakage, and will face durability issues under the coupled effects of calcium leaching and chloride penetration in complex water environments. To quantify the effect of calcium leaching on chloride penetration resistance of concrete in complex water environment, accelerated coupling corrosion tests, which were implemented by chemical solution immersion method for concrete with different water-cement ratio, were carried out to study the evolution of evaluation indexes of leaching and chloride diffusion, and microscopic mechanism was explored. The results showed that the chloride diffusion coefficient and chloride content of completely leached concrete were about 3.5 times and 1.3—2.0 times of those before leaching, respectively. The chloride diffusion coefficient decreased linearly from outside to inside in the leached zone, but the increasing rate of chloride content increased with the depth. The chloride ions adsorption capacity of leached concrete was significantly enhanced and still followed the linear adsorption model. The leaching resistance and chloride penetration resistance of ordinary cement-based concrete both decreased with the increase of water-cement ratio.
Key words:  concrete    calcium leaching    chloride penetration    acceleration effect
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TU528.01  
基金资助: 国家自然科学基金(52278240);湖南省自然科学基金(2020JJ5317)
通讯作者:  *王少伟,常州大学城市建设学院副教授、硕士研究生导师。2006年河海大学水利水电学院水利水电工程专业本科毕业,2016年河海大学水利水电学院水工结构工程专业博士毕业后,到常州大学工作至今。目前主要从事混凝土结构健康监测及老化病害等方面的研究工作。以第一作者或通信作者发表论文40余篇,包括Science China-Technological Sciences、Structural Health Monitoring、Structural Control and Health Monitoring、Journal of Civil Structural Health Monitoring、《硅酸盐学报》等。shaowei2006nanjing@163.com   
引用本文:    
王少伟, 肖焰钰, 朱平华, 严先萃, 夏群. 钙溶蚀对混凝土抗氯离子侵蚀性能的影响[J]. 材料导报, 2024, 38(16): 23020121-7.
WANG Shaowei, XIAO Yanyu, ZHU Pinghua, YAN Xiancui, XIA Qun. Effect of Calcium Leaching on Chloride Penetration Resistance of Concrete. Materials Reports, 2024, 38(16): 23020121-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020121  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23020121
1 Zhou Y, Mu S, Pu C P, et al. Materials Reports, 2022, 36(4), 20120200 (in Chinese).
周莹, 穆松, 蒲春平, 等. 材料导报, 2022, 36(4), 20120200.
2 Wang Z X, Yao Z Q, He L, et al. Journal of Building Materials, 2021, 24(4), 766 (in Chinese).
王宗熙, 姚占全, 何梁, 等. 建筑材料学报, 2021, 24(4), 766.
3 Tang Y J, Zuo X B, Yin G J, et al. Construction and Building Materials, 2018, 174, 310.
4 Wang X C, Liu L. Materials Reports, 2016, 30(12), 124 (in Chinese).
王学成, 刘琳. 材料导报, 2016, 30(12), 124.
5 Wang S W, Xiao Y Y, Xu Y L, et al. Journal of the Chinese Ceramic Society, 2022, 50(2), 403 (in Chinese).
王少伟, 肖焰钰, 徐应莉, 等. 硅酸盐学报, 2022, 50(2), 403.
6 Yang H, Jiang L H, Zhang Y, et al. Construction and Building Materials, 2012, 29, 88.
7 Ding X P, Zhang J, Wang Q. Journal of Building Materials, 2017, 20(6), 827 (in Chinese).
丁小平, 张君, 王庆. 建筑材料学报, 2017, 20(6), 827.
8 Cheng X K, Xiao L F, Wu T T, et al. Journal of Transport Science and Engineering, 2020, 36(2), 73 (in Chinese).
程小康, 肖林发, 吴婷婷, 等. 交通科学与工程, 2020, 36(2), 73.
9 Sun C T, Song H, Niu D T, et al. Journal of Building Materials, 2016, 19(1), 35 (in Chinese).
孙丛涛, 宋华, 牛荻涛, 等. 建筑材料学报, 2016, 19(1), 35.
10 Wang Y Z, Fu K. Construction and Building Materials, 2019, 223, 595.
11 Carde C, Francois R, Torrenti J. Cement and Concrete Research, 1996, 26(8), 1257.
12 Liu Q F, Shen X H, Šavija B, et al. Cement and Concrete Research, 2023, 165, 107072.
13 Song Z J, Jiang L H, Chu H Q. Construction and Building Materials, 2017, 153, 211.
14 Choi Y S, Yang E I. Nuclear Engineering and Design, 2013, 259, 126.
15 Wan K S, Li L, Sun W. Cement and Concrete Research, 2013, 53, 44.
16 Yu B, Ma Q, Huang H C. et al. Construction and Building Materials, 2019, 215, 941.
17 Wang Y Y, Shui Z H, Gao X, et al. Construction and Building Materials. 2019, 222, 15.
18 Song Z J, Jiang L H, Zhang Z M, et al. Construction and Building Materials, 2016, 112, 925.
19 Sandberg P. Cement and Concrete Research, 1999, 29(4), 473.
20 Luo R, Cai Y B, Wang C Y, et al. Cement and Concrete Research, 2003, 33(1), 1.
[1] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[2] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[3] 陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
[4] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[5] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[6] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[7] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
[10] 杨淑雁, 徐盼盼, 宋俊杰, 陈小龙. 基于离差最大化-灰色关联的修补混凝土配合比评价[J]. 材料导报, 2024, 38(6): 22040151-7.
[11] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[12] 姚未来, 刘元雪, 孙涛, 赵宏刚, 穆锐, 雷屹欣. 采用局域共振超材料混凝土提升结构消波防护性能:综述和展望[J]. 材料导报, 2024, 38(5): 23080236-14.
[13] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[14] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[15] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed