Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23020165-8    https://doi.org/10.11896/cldb.23020165
  无机非金属及其复合材料 |
复合材料HAP@nZVI对Mn(Ⅱ)的吸附性能与机理
彭惠靖1,2, 张卫民1,2,3,*, 王玉罡4, 卢琪愿1,2, 王新宇1,2
1 东华理工大学核资源与环境国家重点实验室,南昌 330013
2 东华理工大学水资源与环境工程学院,南昌 330013
3 东华理工大学自然资源部,环鄱阳湖区域矿山环境监测与治理重点实验室,南昌 330013
4 西南交通大学环境科学与工程学院,成都 611756
Adsorption Performance and Mechanism of Hydroxyapatite@Nano-Zero-Valent Iron Composites on Mn(Ⅱ)
PENG Huijing1,2, ZHANG Weimin1,2,3,*, WANG Yugang4, LU Qiyuan1,2, WANG Xinyu1,2
1 State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
2 School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China
3 Key Laboratory of Environmental Monitoring and Management of Mines in Poyang Lake Region, Ministry of Natural Resources, East China University of Technology, Nanchang 330013, China
4 School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
下载:  全 文 ( PDF ) ( 12238KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 使用液相还原法制备羟基磷灰石与纳米零价铁(HAP@nZVI)复合材料,采用实验室静态批试验探讨其对模拟Mn(Ⅱ)污染地下水的处理效果及机理。表征结果显示,HAP@nZVI复合材料表面分布不均匀、松散多孔,nZVI不均匀分布在HAP表面及空隙中。静态批试验结果表明,在溶液pH=5、复合材料用量0.36 g·L-1、反应时间t=180 min条件下最有利于HAP@nZVI复合材料对Mn(Ⅱ)的吸附,在该试验条件范围内,Mn(Ⅱ)最大吸附量达到31.4 mg·g-1,准二级动力学模型和Langmuir吸附等温线模型可以较好地描述HAP@nZVI复合材料对Mn(Ⅱ)的吸附过程,吸附过程属于单层吸附且主要为化学吸附。反应后复合材料整体结构没有发生较大改变,-OH、Fe-O、P-O基团均参与了反应。XPS表征可以进一步证实HAP@nZVI对锰的吸附机理,O 1s和P 2p的结合能发生位移表明有表面络合作用发生;铁的溶出以及Fe0消逝表明存在氧化还原反应;Ca 2p轨道的峰强降低说明存在离子交换。最后,将HAP@nZVI复合材料与已报道的吸附剂对锰离子的吸附性能进行对比,结果表明本研究制备的材料吸附性能良好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭惠靖
张卫民
王玉罡
卢琪愿
王新宇
关键词:  HAP@nZVI复合材料  Mn(Ⅱ)  静态批试验  吸附    
Abstract: Hydroxyapatite and nano-zero-valent iron (HAP@nZVI) composites were prepared by liquid phase reduction method. The treatment effect and mechanism of simulated Mn (II) contaminated groundwater was investigated by static batch tests in laboratory. The characterization results show that the surface of HAP@nZVI composites is uneven and the composites exhibit well-developed porous structure, and nZVI is unevenly distributed in HAP surface and voids. Static batch test results show that under the conditions of solution pH=5, composite dosage 0.36 g/L and reaction time t=180 min, HAP@nZVI composites has the best adsorption effect on Mn(Ⅱ). The maximum adsorption capacity of Mn(Ⅱ) reaches 31.4 mg·g-1 within the range of the test conditions. The quasi-second-order kinetic model and Langmuir adsorption isotherm model can well describe the adsorption process of Mn(Ⅱ) by HAP@nZVI composites, indicating that the adsorption process belongs to single-layer adsorption and is mainly controlled by chemical adsorption. After the reaction, the overall structure of the composite did not change greatly, and -OH, Fe-O, and P-O groups all participate in the reaction. The adsorption mechanism of Mn(Ⅱ) by HAP@nZVI can be further confirmed by XPS characterization. The shift of binding energy about oxygen O 1s and phosphorus P 2p indicate that surface complexation occurs. The dissolution of iron and the disappearance of Fe0 indicate the existence of REDOX reaction. The decrease in the peak strength of the Ca 2p orbital indicates the pre-sence of ion exchange. Finally, the adsorption properties of HAP@nZVI composites and reported adsorbents for manganese ions were compared, and the results show that the material in this study has good adsorption properties.
Key words:  HAP@nZVI composites    Mn(Ⅱ)    static batch test    adsorption
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  X524  
  X591  
基金资助: 江西省自然科学基金 (20202BABL204069);核资源与环境国家重点实验室自主基金(2020Z06)
通讯作者:  *张卫民,博士,教授,博士研究生导师。1987年毕业于成都理工大学(原成都地质学院),获得水文地质学士学位;1990年毕业于东华理工大学(原华东地质学院),获得水文地质硕士学位;2007年毕业于中国地质大学(武汉),获得环境工程博士学位。主要从事水文地质、地下水污染控制与修复等方面的研究。主持国家级和省部级科研项目9项。在国内外各种刊物上发表学术论文100余篇,其中11篇被SCI和EI收录。wmzhang@ecit.cn   
作者简介:  彭惠靖,东华理工大学博士研究生,主要研究方向为地下水污染控制与修复。2018年毕业于南通大学(地理科学学院),获得环境科学学士学位;2021年毕业于东华理工大学(水资源与环境工程学院),获得建筑与土木工程(市政工程)硕士学位。发表学术论文5篇,其中以第一作者身份发表学术论文1篇,授权实用新型专利6项。
引用本文:    
彭惠靖, 张卫民, 王玉罡, 卢琪愿, 王新宇. 复合材料HAP@nZVI对Mn(Ⅱ)的吸附性能与机理[J]. 材料导报, 2024, 38(16): 23020165-8.
PENG Huijing, ZHANG Weimin, WANG Yugang, LU Qiyuan, WANG Xinyu. Adsorption Performance and Mechanism of Hydroxyapatite@Nano-Zero-Valent Iron Composites on Mn(Ⅱ). Materials Reports, 2024, 38(16): 23020165-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020165  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23020165
1 Sun Z X, Liu Y Y, Ma W J, et al. Earth Science Frontiers, 2014, 21(4), 158 (in Chinese).
孙占学, 刘媛媛, 马文洁, 等. 地学前缘, 2014, 21(4), 158.
2 Ouyang J F, Liu Z R, Ye T Z, et al. Journal of Radioanalytical & Nuclear Chemistry, 2019, 322(2), 1011.
3 AlTowyan Layan, AlSagabi Sultan, AlAjyan Turki, et al. Groundwater for Sustainable Development, 2022, 19, 100821.
4 Zhang J K, Hu L F, He Z Q. Environmental Engineering, 2016, 34(S1), 151(in Chinese).
张吉库, 胡立锋, 何钟琦. 环境工程, 2016, 34(S1), 151.
5 Tobiason J E, Bazilio A, Goodwill J, et al. Current Pollution Reports, 2016, 2(3), 168.
6 Su J, Deng L, Huang L, et al. Water Research, 2014, 56(3), 304.
7 Singh Rahul, Chakma Sumedha, Birke Volker. The Science of the Total Environment, 2022, 858(P1), 158838.
8 Vaezihir A, Bayanlou M B, Ahmadnezhad Z, et al. Journal of Contaminant Hydrology, 2020, 230, 103604.
9 Chen L, Ning S, Huang Y, et al. Journal of Cleaner Production, 2020, 256, 120379.
10 Zhang Z, Dong Z, Wang X, et al. Chemical Engineering Journal, 2018, 341, 208.
11 El-azim H A, Seleman M M E, Saad E M. Journal of Environmental Chemical Engineering, 2019, 7(2), 102915.
12 Li Z J, Wang L, Yuan L Y, et al. Journal of Hazardous Materials, 2015, 290(jun. 15), 26.
13 Qingpu S, Minhua S, Gutha Y, et al. Journal of Hazardous Materials, 2020, 394, 122550.
14 Lu Qiyuan, Zhang Weimin, Xiong Xia, et al. Environmental Science and Pollution Research International, 2022, DOI: 10. 1007/S11356-022-23528-1.
15 Guo C, Qi L, Bai Y, et al. Ecotoxicology and Environmental Safety, 2021, 224, 112649.
16 Wang X Y, Zhang W M, Wu Y G, et al. Nonferrous Metals(Extractive Metallurgy), 2022(11), 97(in Chinese).
王新宇, 张卫民, 王玉罡, 等. 有色金属(冶炼部分), 2022(11), 97.
17 Wang Y G, Zhang W M, Chen J H, et al. Materials Reports, 2022, 36(14), 116 (in Chinese).
王玉罡, 张卫民, 陈家鸿, 等. 材料导报, 2022, 36(14), 116.
18 Şenol Z M, Şek S. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324, 317.
19 Hu B, Mei X, Li X, et al. Journal of Molecular Liquids, 2017, 237, 1.
20 Cantrell K J, Kaplan D I, Wietsma T W. Journal of Hazardous Materials, 1995, 42(2), 201.
21 Ding C, Cheng W, Sun Y, et al. Geochim Cosmochim Acta, 2015, 165, 86.
22 Ahmed Waqas, Xu Tianwei, Mahmood Mohsin, et al. Environmental Research, 2022, 214(P2), 113827.
23 Xue L, Hui P, Mei Y, et, al. Journal of Molecular Liquids, 2018, 269, 64.
24 Murakami T, Nishimura T, Tsuda N, et, al. ISIJ International, 2013, 53, 1763.
25 Chen B, Wang J, Kong L, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 612.
26 Hammami K, El-Feki H, Marsan O. et al. Applied Surface Science, 2016, 360, 979.
27 Shylesh S, Singh A. Journal of Catalysis, 2004, 228(2), 333.
28 Rathod V, Anupama A V, Kumar R V, et al. Vibrational Spectroscopy, 2017, 267.
29 Chen C, Zhang X, Jiang T, et al. Journal of Environmental Chemical Engineering, 2021, 9(1), 104706.
30 Şenol Z M, Şek S. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324, 317.
31 Biesinger M C, Payne B P, Grosvenor A P, et al. Applied Surface Science, 2011, 257(7), 2717.
32 Baowei H, Chen G, Jin C, et al. Journal of Hazardous Materials, 2017, 336, 214.
33 Liang X, Hou W, Xu Y, et al. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2010, 366(1-3), 50.
34 Li S N. Study on the conversion of eggshells into different adsorpte materials and their adsorption properties of uranium. Ph. D. Thesis, Harbin Engineering Universuty, China, 2013 (in Chinese).
李松南. 以蛋壳为原料制备多种吸附材料及其铀吸附性能研究. 博士学位论文, 哈尔滨工程大学, 2013.
35 Zeng Y R. Study on effect of manganese removal in groundwater from uranium tailings pond leakage by PRB technology. Master’s Thesis, East China University of Technology, China, 2017 (in Chinese).
曾云嵘. PRB技术处理铀尾矿库渗漏地下水中锰的效果研究. 硕士学位论文, 东华理工大学, 2017.
36 Qin H J, Zhang X L, Yang Z Q, et al. Non-Metallic Mines, 2011, 34(1), 72 (in Chinese).
秦好静, 张秀丽, 杨志强, 等. 非金属矿, 2011, 34(1), 72.
37 Che L S, Yuan C, Lei M, et al. Technology of Water Treatment, 2017, 43(7), 76(in Chinese).
车丽诗, 袁毳, 雷鸣, 等. 水处理技术, 2017, 43(7), 76.
38 Zhu H. Study on removal of ions in water by graphene materials. Master’s Thesis, Jiangsu Universuty of Science and Technology, China, 2018 (in Chinese).
朱浩. 石墨烯系材料去除水中离子的研究. 硕士学位论文, 江苏科技大学, 2018.
39 Tong H J, Zuo W Y, Shi B F, et al. Industrial Safety and Environmental Protection, 2016, 42(11), 53(in Chinese).
仝海娟, 左卫元, 史兵方, 等. 工业安全与环保, 2016, 42(11), 53.
40 Zuo W Y, Tong H J, Shi B F, et al. Inorganic Chemicals Industry, 2016, 48(7), 58(in Chinese).
左卫元, 仝海娟, 史兵方. 无机盐工业, 2016, 48(7), 58.
[1] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[2] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[3] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[4] 宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
[5] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[6] 李佳敏, 常麟晖, 陈步明, 黄惠, 郭忠诚. 氯化物体系单槽双室电积锰工艺研究[J]. 材料导报, 2024, 38(3): 22010135-6.
[7] 高正源, 白佳龙, 孙鹏飞, 安治国. 陶瓷膜在饮用水处理中的应用现状[J]. 材料导报, 2024, 38(16): 23010017-10.
[8] 高浩, 魏中华, 邓佳, 陈涛, 赵海利. PEGMA刷微图案诱导聚苯乙烯纳米颗粒阵列化[J]. 材料导报, 2024, 38(14): 23020080-7.
[9] 李运龙, 刘忆贤, 刘苗, 韩继龙, 周理龙, 李正杰, 甄崇礼, 刘润静. 基于静电和金属络合协同作用的MIL-101(Cr)-NH2高效吸附水中单宁酸[J]. 材料导报, 2024, 38(14): 22100069-8.
[10] 生健平, 喻明富, 李洁, 孙红. 基于V2C催化剂的混合电解质锂空气电池催化机理研究[J]. 材料导报, 2024, 38(10): 23030161-7.
[11] 周爱玲, 贾爱忠, 赵新强, 王延吉. 污水重金属离子选择性吸附的研究进展[J]. 材料导报, 2023, 37(9): 21110052-10.
[12] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[13] 李娅, 马飞跃, 张明, 涂行浩, 杜丽清. 不同尺寸改性果胶基磁性微球的制备及对Pb2+吸附性能的研究[J]. 材料导报, 2023, 37(9): 21050165-8.
[14] 李贞, 刘加平, 乔敏, 于诚, 谢惟肖, 陈俊松. 基于减水剂吸附行为的再生微粉-水泥浆体黏度调控机理研究[J]. 材料导报, 2023, 37(8): 21090090-7.
[15] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed