Adsorption Performance and Mechanism of Hydroxyapatite@Nano-Zero-Valent Iron Composites on Mn(Ⅱ)
PENG Huijing1,2, ZHANG Weimin1,2,3,*, WANG Yugang4, LU Qiyuan1,2, WANG Xinyu1,2
1 State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China 2 School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China 3 Key Laboratory of Environmental Monitoring and Management of Mines in Poyang Lake Region, Ministry of Natural Resources, East China University of Technology, Nanchang 330013, China 4 School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
Abstract: Hydroxyapatite and nano-zero-valent iron (HAP@nZVI) composites were prepared by liquid phase reduction method. The treatment effect and mechanism of simulated Mn (II) contaminated groundwater was investigated by static batch tests in laboratory. The characterization results show that the surface of HAP@nZVI composites is uneven and the composites exhibit well-developed porous structure, and nZVI is unevenly distributed in HAP surface and voids. Static batch test results show that under the conditions of solution pH=5, composite dosage 0.36 g/L and reaction time t=180 min, HAP@nZVI composites has the best adsorption effect on Mn(Ⅱ). The maximum adsorption capacity of Mn(Ⅱ) reaches 31.4 mg·g-1 within the range of the test conditions. The quasi-second-order kinetic model and Langmuir adsorption isotherm model can well describe the adsorption process of Mn(Ⅱ) by HAP@nZVI composites, indicating that the adsorption process belongs to single-layer adsorption and is mainly controlled by chemical adsorption. After the reaction, the overall structure of the composite did not change greatly, and -OH, Fe-O, and P-O groups all participate in the reaction. The adsorption mechanism of Mn(Ⅱ) by HAP@nZVI can be further confirmed by XPS characterization. The shift of binding energy about oxygen O 1s and phosphorus P 2p indicate that surface complexation occurs. The dissolution of iron and the disappearance of Fe0 indicate the existence of REDOX reaction. The decrease in the peak strength of the Ca 2p orbital indicates the pre-sence of ion exchange. Finally, the adsorption properties of HAP@nZVI composites and reported adsorbents for manganese ions were compared, and the results show that the material in this study has good adsorption properties.
彭惠靖, 张卫民, 王玉罡, 卢琪愿, 王新宇. 复合材料HAP@nZVI对Mn(Ⅱ)的吸附性能与机理[J]. 材料导报, 2024, 38(16): 23020165-8.
PENG Huijing, ZHANG Weimin, WANG Yugang, LU Qiyuan, WANG Xinyu. Adsorption Performance and Mechanism of Hydroxyapatite@Nano-Zero-Valent Iron Composites on Mn(Ⅱ). Materials Reports, 2024, 38(16): 23020165-8.
1 Sun Z X, Liu Y Y, Ma W J, et al. Earth Science Frontiers, 2014, 21(4), 158 (in Chinese). 孙占学, 刘媛媛, 马文洁, 等. 地学前缘, 2014, 21(4), 158. 2 Ouyang J F, Liu Z R, Ye T Z, et al. Journal of Radioanalytical & Nuclear Chemistry, 2019, 322(2), 1011. 3 AlTowyan Layan, AlSagabi Sultan, AlAjyan Turki, et al. Groundwater for Sustainable Development, 2022, 19, 100821. 4 Zhang J K, Hu L F, He Z Q. Environmental Engineering, 2016, 34(S1), 151(in Chinese). 张吉库, 胡立锋, 何钟琦. 环境工程, 2016, 34(S1), 151. 5 Tobiason J E, Bazilio A, Goodwill J, et al. Current Pollution Reports, 2016, 2(3), 168. 6 Su J, Deng L, Huang L, et al. Water Research, 2014, 56(3), 304. 7 Singh Rahul, Chakma Sumedha, Birke Volker. The Science of the Total Environment, 2022, 858(P1), 158838. 8 Vaezihir A, Bayanlou M B, Ahmadnezhad Z, et al. Journal of Contaminant Hydrology, 2020, 230, 103604. 9 Chen L, Ning S, Huang Y, et al. Journal of Cleaner Production, 2020, 256, 120379. 10 Zhang Z, Dong Z, Wang X, et al. Chemical Engineering Journal, 2018, 341, 208. 11 El-azim H A, Seleman M M E, Saad E M. Journal of Environmental Chemical Engineering, 2019, 7(2), 102915. 12 Li Z J, Wang L, Yuan L Y, et al. Journal of Hazardous Materials, 2015, 290(jun. 15), 26. 13 Qingpu S, Minhua S, Gutha Y, et al. Journal of Hazardous Materials, 2020, 394, 122550. 14 Lu Qiyuan, Zhang Weimin, Xiong Xia, et al. Environmental Science and Pollution Research International, 2022, DOI: 10. 1007/S11356-022-23528-1. 15 Guo C, Qi L, Bai Y, et al. Ecotoxicology and Environmental Safety, 2021, 224, 112649. 16 Wang X Y, Zhang W M, Wu Y G, et al. Nonferrous Metals(Extractive Metallurgy), 2022(11), 97(in Chinese). 王新宇, 张卫民, 王玉罡, 等. 有色金属(冶炼部分), 2022(11), 97. 17 Wang Y G, Zhang W M, Chen J H, et al. Materials Reports, 2022, 36(14), 116 (in Chinese). 王玉罡, 张卫民, 陈家鸿, 等. 材料导报, 2022, 36(14), 116. 18 Şenol Z M, Şek S. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324, 317. 19 Hu B, Mei X, Li X, et al. Journal of Molecular Liquids, 2017, 237, 1. 20 Cantrell K J, Kaplan D I, Wietsma T W. Journal of Hazardous Materials, 1995, 42(2), 201. 21 Ding C, Cheng W, Sun Y, et al. Geochim Cosmochim Acta, 2015, 165, 86. 22 Ahmed Waqas, Xu Tianwei, Mahmood Mohsin, et al. Environmental Research, 2022, 214(P2), 113827. 23 Xue L, Hui P, Mei Y, et, al. Journal of Molecular Liquids, 2018, 269, 64. 24 Murakami T, Nishimura T, Tsuda N, et, al. ISIJ International, 2013, 53, 1763. 25 Chen B, Wang J, Kong L, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 612. 26 Hammami K, El-Feki H, Marsan O. et al. Applied Surface Science, 2016, 360, 979. 27 Shylesh S, Singh A. Journal of Catalysis, 2004, 228(2), 333. 28 Rathod V, Anupama A V, Kumar R V, et al. Vibrational Spectroscopy, 2017, 267. 29 Chen C, Zhang X, Jiang T, et al. Journal of Environmental Chemical Engineering, 2021, 9(1), 104706. 30 Şenol Z M, Şek S. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324, 317. 31 Biesinger M C, Payne B P, Grosvenor A P, et al. Applied Surface Science, 2011, 257(7), 2717. 32 Baowei H, Chen G, Jin C, et al. Journal of Hazardous Materials, 2017, 336, 214. 33 Liang X, Hou W, Xu Y, et al. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2010, 366(1-3), 50. 34 Li S N. Study on the conversion of eggshells into different adsorpte materials and their adsorption properties of uranium. Ph. D. Thesis, Harbin Engineering Universuty, China, 2013 (in Chinese). 李松南. 以蛋壳为原料制备多种吸附材料及其铀吸附性能研究. 博士学位论文, 哈尔滨工程大学, 2013. 35 Zeng Y R. Study on effect of manganese removal in groundwater from uranium tailings pond leakage by PRB technology. Master’s Thesis, East China University of Technology, China, 2017 (in Chinese). 曾云嵘. PRB技术处理铀尾矿库渗漏地下水中锰的效果研究. 硕士学位论文, 东华理工大学, 2017. 36 Qin H J, Zhang X L, Yang Z Q, et al. Non-Metallic Mines, 2011, 34(1), 72 (in Chinese). 秦好静, 张秀丽, 杨志强, 等. 非金属矿, 2011, 34(1), 72. 37 Che L S, Yuan C, Lei M, et al. Technology of Water Treatment, 2017, 43(7), 76(in Chinese). 车丽诗, 袁毳, 雷鸣, 等. 水处理技术, 2017, 43(7), 76. 38 Zhu H. Study on removal of ions in water by graphene materials. Master’s Thesis, Jiangsu Universuty of Science and Technology, China, 2018 (in Chinese). 朱浩. 石墨烯系材料去除水中离子的研究. 硕士学位论文, 江苏科技大学, 2018. 39 Tong H J, Zuo W Y, Shi B F, et al. Industrial Safety and Environmental Protection, 2016, 42(11), 53(in Chinese). 仝海娟, 左卫元, 史兵方, 等. 工业安全与环保, 2016, 42(11), 53. 40 Zuo W Y, Tong H J, Shi B F, et al. Inorganic Chemicals Industry, 2016, 48(7), 58(in Chinese). 左卫元, 仝海娟, 史兵方. 无机盐工业, 2016, 48(7), 58.