Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 22100017-7    https://doi.org/10.11896/cldb.22100017
  无机非金属及其复合材料 |
裹浆改性再生骨料的形态特征评价方法
李克亮1,*, 弓晋伟1, 陈爱玖1, 孙作正1, 杜晓蒙2, 李宁宁1
1 华北水利水电大学土木与交通学院,郑州 450045
2 郑州鼎盛工程技术有限公司,郑州 450001
Morphological Characteristics Evaluation Method of Slurry-modified Recycled Aggregate
LI Keliang1,*, GONG Jinwei1, CHEN Aijiu1, SUN Zuozheng1, DU Xiaomeng2, LI Ningning1
1 School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
2 Zhengzhou Dingsheng Engineering Technology Co., Ltd., Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 8613KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对裹浆改性再生骨料形貌、棱角、纹理等形态特征量化过程中评价方法多样、普适性较弱等问题,本工作通过三维扫描技术和二维图像处理技术获取八种不同维度形态参数,结合四个粒径区间的三种不同碱激发材料浆液裹浆改性再生骨料,探究裹浆改性再生骨料形态特征评价方法。研究表明:统计分析发现不同粒径区间裹浆改性再生骨料形态参数呈偏态分布,当样本数量足够多即大样本条件下裹浆改性再生骨料形态参数均可用均值表示;经相关性分析得出不同维度或相同维度形态参数间包含一定的重叠信息,彼此之间存在相关关系,在甄别再生骨料形貌、棱角、纹理特征过程中产生不利影响;通过因子分析筛除形态参数冗余信息,压缩数据,对八种形态参数数据进行降维处理,可使存在复杂相关关系的变量转变为能最大化包含原始变量信息的综合指标(纹理因子F1、形貌因子F2、棱角因子F3);根据因子得分定量分析发现不同碱激发材料浆液裹浆改性后再生骨料的形态变化趋势相同,与原状再生骨料相比,其表面粗糙程度降低,形貌更加接近球状,表面凹凸棱角相对减少。新的综合指标可更高效便捷地评价裹浆改性再生骨料形态特征,为其实际工程应用提供指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李克亮
弓晋伟
陈爱玖
孙作正
杜晓蒙
李宁宁
关键词:  再生骨料  碱激发材料  裹浆改性  形态特征  形态参数  因子分析    
Abstract: This wrok aims at the problems of various evaluation methods and weak universality in quantifying morphological characteristics of slurry-modified recycled aggregates. By obtaining 8 different morphological parameters through 3D scanning technology and 2D image processing technology, the morphological characteristics evaluation method of slurry-modified recycled aggregates was investigated that used 3 slurries of alkali-activated materials and 4 ranges of particle diameter. The study shows that the morphological parameters of the slurry-modified recycled aggregates show a skewed distribution, and they can be expressed as mean values when the number of samples is large enough. The correlation analysis shows that 8 morphological parameters contain certain overlapping information. It brings some negative influences in the evaluation of the morphological, angular and textural characteristics of recycled aggregates. By wiping off the overlapping information of morphological parameters, the variables with complex correlations are reduced dimensionality to transform into comprehensive indexes, which are textural factor F1, morp-hological factor F2, and angular factor F3. According to the score analysis of these comprehensive factors, the morphological changes of the recycled aggregates after slurry modification with different alkali-activated materials have the same trend. Compared with the raw recycled aggregate, the slurry-modified recycled aggregates have lower surface roughness, less angular and near-spherical morphology. These comprehensive factors bring more efficient morphology evaluation and better guidance for practical engineering applications of slurry-modified recycled aggregates.
Key words:  recycled aggregate    alkali-activated material    slurry-modified    morphological characteristics    morphological parameter    factor ana-lysis
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TU521  
基金资助: 国家自然科学基金面上项目(52179133);河南省科技攻关项目(222102320131)
通讯作者:  *李克亮,华北水利水电大学土木与交通学院教授、硕士研究生导师,河南省废物利用技术与装备工程研究中心副主任,华北水利水电大学固废资源化利用与先进土木工程材料研究所长及土木与交通学院副院长。1997年在华北水利水电学院获得工业与民用建筑工程专业工学学士学位,2000年在南京水利科学研究院获得水工结构工程专业工学硕士学位,2008年在河海大学获得结构工程专业工学博士学位。主要从事低碳生态建筑材料、固体废弃物资源化利用、高性能无机胶凝材料及其混凝土的研究工作。获得省部级科技奖二等奖4项、三等奖2项,出版专著2部,获得国家发明专利20余项。likeliang@ncwu.edu.cn   
引用本文:    
李克亮, 弓晋伟, 陈爱玖, 孙作正, 杜晓蒙, 李宁宁. 裹浆改性再生骨料的形态特征评价方法[J]. 材料导报, 2023, 37(21): 22100017-7.
LI Keliang, GONG Jinwei, CHEN Aijiu, SUN Zuozheng, DU Xiaomeng, LI Ningning. Morphological Characteristics Evaluation Method of Slurry-modified Recycled Aggregate. Materials Reports, 2023, 37(21): 22100017-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100017  或          http://www.mater-rep.com/CN/Y2023/V37/I21/22100017
1 Zhang H R, Ji T, Liu H, et al. Construction and Building Materials, 2021, 297, 123535.
2 Ho H L, Huang R, Lin W T, et al. Construction and Building Materials, 2018, 160, 278.
3 Xu Y D, Xu R P. Applied Mechanics and Materials, 2010, 44, 218.
4 Bian J W, Zhang W B, Shen Z Z. Science and Engineering of Composite Materials, 2021, 28, 516.
5 García-González J, Rodríguez-Robles D. Magazine of Concrete Research, 2015, 67, 1214.
6 Sun D S, Li Z Y, Liu K W, et al. Materials Reports, 2022, 35(11), 11027 (in Chinese).
孙道胜, 李泽英, 刘开伟, 等. 材料导报, 2021, 35(11), 11027.
7 Du M, Chen F H, Wang S L. Building Structure, 2022, 52(13), 127 (in Chinese).
杜敏, 陈凡红, 王素莉. 建筑结构, 2022, 52(13), 127.
8 Lei B, Li W G. Journal of Materials Research and Technology, 2020, 9, 13375.
9 Dimitriou G, Savva P, Petrou M. Construction and Building Materials, 2018, 158, 228.
10 Berrezueta E, Cuervas-Mons J, Rodríguez-Rey Á, et al. Minerals, 2019, 9, 768.
11 Liang D W, Luo Q, Liu G, et al. Journal of Railway Science and Engineering, 2018, 15(1), 52 (in Chinese).
梁多伟, 罗强, 刘钢, 等. 铁道科学与工程学报, 2018, 15(1), 52.
12 Komba J J, Anochie-Boateng J K, Steyn W V D M. Transportation Research Record Journal of the Transportation Research Boardy, 2013, 2335, 60.
13 Kuo C Y, Freeman R B. Transportation Research Record, 2000, 17, 57.
14 Yin H, Wang S H, Dong Z R, et al. Chinese Journal of Geotechnical Engineering, 2022, 44(4), 721 (in Chinese).
尹宏, 王述红, 董卓然, 等. 岩土工程学报, 2022, 44(4), 721.
15 Xu Z J, Zheng J J, Zhang J, et al. Journal of Rock and Soil Mechanics, 2010, 31(S2), 407 (in Chinese).
徐志军, 郑俊杰, 张军, 等. 岩土力学, 2010, 31(S2), 407.
16 Wang H N, Hao P W. Journal of Building Materials, 2009, 12(6), 747 (in Chinese).
汪海年, 郝培文. 建筑材料学报, 2009, 12(6), 747.
17 Su W C. Experimental study on gravel particle shape effect on the performance of asphalt mixture. Master's Thesis, Changsha University of Science & Technology, China, 2013 (in Chinese).
苏文超. 碎石颗粒形状对沥青混合料性能影响的试验研究. 硕士学位论文, 长沙理工大学, 2013.
18 Zhang D, Huang X M, Zhao Y L. Construction and Building Materials, 2012, 34, 330.
19 Kwan A K H, Mora C K, Chan H C. Cement and Concrete Research, 1999, 29, 1403.
20 Sarkar N, Chaudhuri B B. IEEE Transactions on, Systems, Man and Cybernetics, 1994, 24, 115.
21 Yu B Y, Liang Y S. Fractal and Fractional, 2022, 6, 398.
22 Li L, Long G C, Xie Y J, et al. Journal of Railway Science and Engineering, 2022, 19(3), 714 (in Chinese).
李良, 龙广成, 谢友均, 等. 铁道科学与工程学报, 2022, 19(3), 714.
23 Krumbein W C. Journal of Sedimentary Research, 1941, 11, 64.
24 Sukumaran B, Ashmawy A K. Géotechnique, 2001, 51, 619.
25 Liu G, Zhao M Z, Lu R, et al. Rock and Soil Mechanics, 2019, 40(12), 4644 (in Chinese).
刘刚, 赵明志, 陆瑞, 等. 岩土力学, 2019, 40(12), 4644.
26 Xiao B L, Yang Z Q, Chen D X, et al. Journal of Tianjin University(Science and Technology), 2019, 52(5), 545 (in Chinese).
肖柏林, 杨志强, 陈得信, 等. 天津大学学报(自然科学与工程技术版), 2019, 52(5), 545.
27 He X Q. Multivariate statistical analysis(fifth edition), China Renmin University Press, China, 2019, pp. 134 (in Chinese).
何晓群. 多元统计分析(第5版), 中国人民大学出版社, 2019, pp. 134.
[1] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[2] 徐县, 康晶, 蔡新华, 王维康. 碱激发锌渣胶凝材料设计制备与微观结构分析[J]. 材料导报, 2022, 36(22): 21050274-7.
[3] 冯春花, 黄益宏, 崔卜文, 朱建平, 李东旭, 郭晖. 建筑再生骨料强化方法研究进展[J]. 材料导报, 2022, 36(21): 20080099-8.
[4] 李林坤, 刘琦, 黄天勇, 李扬, 彭勃. 基于水泥基材料的CO2矿化封存利用技术综述[J]. 材料导报, 2022, 36(19): 20100295-9.
[5] 杨树桐, 李琳桢, 于淼. 碱激发海砂再生骨料混凝土的制备及其拉伸强度的确定[J]. 材料导报, 2021, 35(z2): 176-182.
[6] 王雅思, 郑建岚, 游帆. 再生骨料强化方法研究进展[J]. 材料导报, 2021, 35(5): 5053-5061.
[7] 朱亚光, 戎丹萍, 徐培蓁, 陈飞, 孙文堂. 供氧剂浓度和浸泡位置对MICP再生骨料性能的影响[J]. 材料导报, 2021, 35(4): 4074-4078.
[8] 孙道胜, 李泽英, 刘开伟, 王爱国, 黄伟, 张高展. 再生粗骨料的形态及缺陷对再生混凝土干燥收缩和力学性能的影响[J]. 材料导报, 2021, 35(11): 11027-11033.
[9] 孙道胜, 许婉钰, 刘开伟, 欧阳金至, 王爱国. MICP在建筑领域中的应用进展[J]. 材料导报, 2021, 35(11): 11083-11090.
[10] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[11] 李太行, 戚承志, 王晓娇, 周理安. 再生建筑骨料添加对城墙土体抗渗性的影响[J]. 材料导报, 2020, 34(Z1): 220-223.
[12] 周文娟, 张志伟, 徐玉波. 建筑垃圾再生骨料无机混合料的力学及抗冻性能[J]. 材料导报, 2020, 34(Z1): 234-236.
[13] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[14] 宋维龙, 朱志铎, 浦少云, 宋世攻, 彭宇一, 顾晓彬, 魏永强. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
[15] 孙道胜, 叶哲, 刘开伟, 王爱国, 管艳梅, 陈东. 碱矿渣胶凝材料的固砂特性及抗硫酸盐侵蚀性能[J]. 材料导报, 2020, 34(10): 10061-10067.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed