Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 22040339-6    https://doi.org/10.11896/cldb.22040339
  无机非金属及其复合材料 |
基于油菜花粉模板制备Fe基复合材料及其催化特性
程爱华*, 谢倩祎
西安科技大学地质与环境学院,西安 710054
Preparation of Fe-based Composites Based on Rape Pollen Template and Their Catalytic Properties
CHENG Aihua*, XIE Qianyi
College of geology and environment, Xi'an University of Science and Technology, Xi'an 710054, China
下载:  全 文 ( PDF ) ( 9238KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以油菜花粉为生物模板,采用共沉淀-焙烧法制备了Fe基复合材料活化过硫酸盐降解苯酚。采用X射线衍射(XRD)、扫描电子显微镜 (SEM)和比表面积分析仪(BET)对Fe基复合材料进行表征分析。以苯酚为目标污染物,考察了催化剂投加量、过硫酸盐投加量、初始pH和苯酚浓度对苯酚降解效果的影响。结果表明,Fe基复合材料活化过硫酸盐降解苯酚性能优良。在最佳反应条件(25 ℃,苯酚初始浓度为200 mg/L,催化剂投加量为3 g/L,过硫酸盐投加量为8.4 mmol/L)下,反应60 min苯酚的降解率可达91%。Fe基复合材料可通过磁性分离,易于回收,在较宽pH范围内均可活化过硫酸盐降解苯酚,重复使用三次后,苯酚的降解率仍可达81%,稳定性良好。Fe基复合材料通过Fe2+及花粉模板残留的C及其官能团共同活化过硫酸盐产生SO4·-和 HO·降解苯酚。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程爱华
谢倩祎
关键词:  油菜花粉  Fe基复合材料  过硫酸盐  活化  苯酚    
Abstract: Using rape pollen as a biological template, Fe-based composites were prepared by coprecipitation-calcination method for phenol degradation by activated persulfate. The Fe-based composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and specific surface area analyzer(BET). Phenol as the target pollutant, the effects of catalyst dosage, persulfate dosage, initial pH and phenol concentration on the degradation of phenol were investigated. The results show that the Fe-based composites have excellent performance in the degradation of phenol by activating persulfate. Under the optimal reaction conditions (25 ℃, the initial concentration of phenol was 200 mg/L, the dosage of catalyst was 3 g/L, and the dosage of persulfate was 8.4 mmol/L), the degradation rate of phenol after the reaction for 60 min could be obtained up to 91%. The Fe-based composite material can be separated by magnetic separation and easy to recover. It can activate persulfate to degrade phenol in a wide pH range. After repeated use for 3 times, the degradation rate of phenol can still reach 81%, indicating that the Fe-based composite material is stable. Phenol is degraded through the Fe-based composites activated persulfate to produce SO4·- and HO· by Fe2+and the residual C and its functional groups in the pollen template activated persulfate.
Key words:  rape pollen    Fe-based composites    persulfate    activation    phenol
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TB332  
  X703.1  
基金资助: 国家自然科学基金青年项目(51808442)
通讯作者:  *程爱华,1998年毕业于兰州铁道学院(现兰州交通大学),获得环境工程学士学位。2001年毕业于兰州铁道学院(现兰州交通大学),获得环境工程硕士学位。2007年毕业于西安建筑科技大学,获得环境工程博士学位。西安科技大学教师,副教授,硕士研究生导师。主要从事水处理技术和环境功能材料的教学与科研工作。发表论文 60 余篇,获得国家授权发明专利 7项。cah_cheng@126.com   
引用本文:    
程爱华, 谢倩祎. 基于油菜花粉模板制备Fe基复合材料及其催化特性[J]. 材料导报, 2023, 37(21): 22040339-6.
CHENG Aihua, XIE Qianyi. Preparation of Fe-based Composites Based on Rape Pollen Template and Their Catalytic Properties. Materials Reports, 2023, 37(21): 22040339-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040339  或          http://www.mater-rep.com/CN/Y2023/V37/I21/22040339
1 Khenniche L, Benissad A F. Journal of Chemical and Engineering Data, 2010, 55 (11), 4677.
2 Muhammad S, Saputra E, Sun H Q, et al. Industrial and Engineering Chemistry Research, 2012, 51(47), 15351.
3 Zhao H H, Kong C H. Chemical Engineering Journal, 2018, 339, 424.
4 Yan J C, Chen Y, Qian L B, et al. Journal of Hazardous Materials, 2017, 338, 372.
5 Zhang F, Zhao L F. Fine Chemicals, 2016, 33(4), 452.
6 Zhao D, Liao X Y, YanX L, et al. Journal of Hazardous Materials, 2013, 254/255, 228.
7 Jiang M D, Zhang Q Y , Ji Y F, et al. Environmental Science, 2018, 39(4), 1661.
8 Cheng A H, Shao X L, Wang Q. Science Technology and Engineering, 2017, 17(35), 347(in Chinese).
程爱华, 邵新岚, 王倩. 科学技术与工程, 2017, 17(35), 347.
9 Lin T L, Liu X F, Hang C K. Environment and Sustainable Development, 2017, 42(5), 103(in Chinese).
林天来, 刘秀峰, 黄灿克. 环境与可持续展, 2017, 42(5), 103.
10 Kwong K C, Chim M M, Davies J F, et al. Atmospheric Chemistry and Physics, 2018, 18(4), 2809.
11 Liang C J, Lai M C. Environmental Engineering Science, 2008, 25(7), 1071.
12 Tan C Q, Gao N Y, Deng Y, et al. Journal of Hazardous Materials, 2014, 276, 452.
13 Lei Y, Chen C S, Tu Y J, et al. Environmental Science and Technology, 2015, 49(11), 6838.
14 Gong Y Y, Tang J C, Zhao D Y. Water Research, 2016, 89, 309.
15 Chen H, Zhang Z L, Feng M B, et al. Chemical Engineering Journal, 2017, 313(4), 498.
16 Zhang S, L Yu H H, Tang J C, et al. Chemosphere, 2019, 217, 686.
17 Hua J, Wang M, Lin S T, et al. China Environmental Science, 2021, 41(6), 2646(in Chinese).
华洁, 王敏, 林舒婷, 等. 中国环境科学, 2021, 41(6), 2646.
18 Ministry of environmental protection of the People's Republic of China. determination of volatile phenols in water quality by 4-aminoantipyrine spectrophotometry, HJ 503-2009. 2009-02-10(in Chinese).
中华人民共和国环境保护部.水质挥发酚的测4-氨基安替比林分光光度法: HJ 503-2009.2009-02-10.
19 Xu Y S, Zhu X X, Li J F, etal. Environmental Chemistry, 2020, 39(3), 662(in Chinese).
徐奕莎, 朱晓晓, 李建法, 等. 环境化学, 2020, 39(3), 662.
20 Fan J H, Gu L, Wu D L, et al. Chemical Engineering Journal, 2018, 333, 657.
21 He J, Tang J C, Zhang Z, et al . Chemical Engineering Journal, 2021, 404, 126997.
22 Xu J, Zhang X L, Sun C, et al. Environmental Science and Pollution Research, 2019, 26(3), 2820.
23 Jiang X, Guo Y H, Zhang L B, et al. Chemical Engineering Journal, 2018, 341, 392.
24 Sarmento A P, Borges A C, Dematos A T, et al. Environmental Science and Pollution Research, 2016, 23(18), 18429.
25 Ji F, Li C L, Wei X Y, et al. Chemical Engineering Journal, 2013, 231, 434.
26 Kemmou L, Frontistis Z, Vakros J, et al . Catalysis Today, 2018, 313, 128.
27 Yan J C, Han L, Gao W G, et al. Bioresource Technology, 2015, 175, 269.
28 Hssain I, Li M Y, Zhang Y Q, et al. Chemical Engineering Journal, 2017, 311, 163.
[1] 吴肖, 魏新莉, 赵栋, 翟文翔, 李旺. 栓皮栎软木分级多孔活性炭的制备及对亚甲基蓝的吸附[J]. 材料导报, 2023, 37(8): 21090088-7.
[2] 张进, 谭璐, 邢宝岩, 李作鹏, 赵建国, 屈文山, 张璐. 环氧导电胶的反应动力学及其应用[J]. 材料导报, 2023, 37(8): 22020025-6.
[3] 祖丽呼玛尔·木沙江, 赵静, 肖鹏飞. 金属基纳米材料在过硫酸盐高级氧化工艺中的应用进展[J]. 材料导报, 2023, 37(4): 21040022-8.
[4] 黄贤敏, 李紫薇, 张晓妍, 刘慧, 高红艳, 汪海. 核壳结构的V10O24·12H2O@ACFC:一种高性能对称超级电容器电极材料[J]. 材料导报, 2023, 37(21): 22050088-8.
[5] 詹子雄, 黄希, 韦丽华, 杨西亚, 李清山, 李小燕. 比较不同压头提取离子辐照后低活化铁素体/马氏体钢屈服强度的差异[J]. 材料导报, 2023, 37(18): 22010165-6.
[6] 张婷婷, 高慧, 杨溢青, 洪兴枝, 任颖, 武海顺. 基于咔唑类给体分子的给-受体型热活化延迟荧光材料研究进展[J]. 材料导报, 2023, 37(16): 22060089-12.
[7] 张墅野, 初远帆, 李振锋, 鲍俊辉, 张雨杨, 刘一甫, 易庆鸿, 崔澜馨, 何鹏. “后摩尔时代”芯片互连方法简析[J]. 材料导报, 2023, 37(15): 22040268-10.
[8] 王剑锋, 常磊, 王艳, 刘辉, 岳德钰, 崔素萍, 兰明章. 钢渣胶凝活性与体积稳定性优化研究现状[J]. 材料导报, 2023, 37(11): 21100032-9.
[9] 许效锐, 莫恒亮, 唐阳, 刘曼曼, 侯婉伊, 李锁定, 赵文芳, 杨恒宇, 万平玉. 加速锰铁氧系氨氮亚硝化催化剂活化的研究[J]. 材料导报, 2023, 37(10): 21120199-6.
[10] 曹宗仑, 孙杰, 练越, 张淮浩. 无碱活化的生物质衍生碳:一种适应于多种金属离子的电容脱盐电极材料[J]. 材料导报, 2022, 36(24): 21110062-6.
[11] 李克亮, 宋子明. 基于正交试验的拜耳法赤泥活化机理及性能分析[J]. 材料导报, 2022, 36(16): 21040130-7.
[12] 苏英杰, 高丽娟, 卢振杰, 杨广, 程俊霞, 赵雪飞. 废弃酚醛树脂保温材料基电极材料多孔炭的制备及构效关系[J]. 材料导报, 2022, 36(12): 21030309-7.
[13] 任万青, 徐掌印, 尹贻光, 祁震. TiFe基储氢材料性能的研究进展[J]. 材料导报, 2021, 35(Z1): 306-310.
[14] 陈恩丽, 段俊新, 谢智中. N-杂环卡宾活化二氧化碳的研究进展[J]. 材料导报, 2021, 35(9): 9196-9209.
[15] 熊兆锟, 张恒, 刘杨, 周鹏, 何传书, 黄荣夫, 杜烨, 赖波. 基于零价铁的高级氧化技术与装备[J]. 材料导报, 2021, 35(21): 21012-21021.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed