Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 22010146-9    https://doi.org/10.11896/cldb.22010146
  无机非金属及其复合材料 |
超高性能混凝土预应力锚固齿块承压性能研究
杨俊1,2, 任伟2, 冷景晨2, 张中亚1,2,*, 邹杨1,2, 周建庭1,2, 胡天祥3
1 重庆交通大学山区桥梁及隧道工程国家重点实验室,重庆 400074
2 重庆交通大学土木工程学院,重庆 400074
3 深圳高速公路集团股份有限公司,广东 深圳 518026
Research on Local Pressure Performance of Ultra-high Performance Concrete Prestressed Anchor Block
YANG Jun1,2, REN Wei2, LENG Jingchen2, ZHANG Zhongya1,2,*, ZOU Yang1,2, ZHOU Jianting1,2, HU Tianxiang3
1 State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
3 Shenzhen Expressway Group Co., Ltd., Shenzhen 518026, Guangdong, China
下载:  全 文 ( PDF ) ( 10278KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高齿块的承压性能与耐久性能,以连续刚构桥预应力锚固齿块为研究对象,开展超高性能混凝土(UHPC)锚固齿块的承压性能试验,研究了局压与全压荷载作用下锚固齿块的抗裂性能、极限承载力、破坏特征和五种典型局部效应,并提出了UHPC预应力锚固齿块局压承载力计算公式。结果表明:UHPC能有效提高锚固齿块的抗裂性能和承压能力。相较于普通混凝土(NC)预应力锚固齿块,局压荷载作用下UHPC预应力锚固齿块的抗裂性能和极限承载能力分别提高了2.51倍和3.27倍,提升效果显著,在进行UHPC预应力锚固齿块设计时,在保证其力学性能并兼顾经济性的条件下,建议其尺寸设计为NC预应力锚固齿块的0.75倍。局部承压下,UHPC预应力锚固齿块的破坏模式与NC预应力锚固齿块存在明显区别,UHPC预应力锚固齿块的整体性更好,仅在底板和齿块出现微小裂缝,荷载-位移曲线具有明显屈服平台;同时,所有锚固齿块均呈现显著的“锚下劈裂效应”和“锚后牵拉效应”;最后,基于试验结果和有限元分析,对UHPC预应力锚固齿块局部区承载能力计算公式进行了修正,计算结果精度为95%,可为UHPC预应力锚固齿块的工程实际运用提供理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨俊
任伟
冷景晨
张中亚
邹杨
周建庭
胡天祥
关键词:  UHPC  预应力锚固齿块  局压承载能力  局部效应    
Abstract: In order to improve the pressure-bearing performance and durability of the prestressed anchor block, the prestressed anchor blocks of continuous rigid frame bridge were taken as research object and the compression performance test of the ultra-high performance concrete (UHPC) anchor blocks were carried out. The crack resistance, ultimate bearing capacity, failure characteristics and five typical local effects of the anchored tooth block under partial pressure and full pressure load were researched and the calculation formula of bearing capacity was proposed. The results show that UHPC can effectively improve the crack resistance and pressure-bearing capacity of the anchor tooth block. Compared with NC prestressed anchored tooth blocks, the crack resistance and ultimate bearing capacity of UHPC prestressed anchor blocks under local compressive load are increased by 2.51 times and 3.27 times, respectively. The improvement effect is remarkable. When designing the UHPC prestressed anchor tooth block, it is recommended that its size be designed to be 0.75 times the NC prestressed anchor tooth block under the condition of ensuring its mechanical properties and taking into account the economy. The local pressure-bearing failure mode of UHPC prestressed anchor block is obviously different from that of NC prestressed anchor block. Its integrity is better and only small cracks appear in the bottom plate and anchor block. The load-displacement curve has an obvious yield platform. At the same time, all prestressed anchor blocks show significant ‘under-anchor splitting effect’ and ‘post-anchor pulling effect’. Finally, based on the test results and finite element analysis, the calculation formula for the local bearing capacity of UHPC prestressed anchor blocks is revised. The accuracy of the calculation result is 95%, which can provide a theoretical reference for the practical application of engineering in the future.
Key words:  UHPC    prestressed anchor block    local pressure-bearing capacity    local effects
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  U448.213  
基金资助: 国家自然科学基金(U20A20314;51908093);中国博士后科学基金(2021M693919);重庆市自然科学基金(cstc2020jcyj-msxmX0088);重庆交通大学研究生科研创新项目资助(2021S0017)
通讯作者:  *张中亚,工学博士(后),副教授,硕士研究生导师,重庆交通大学土木工程学院教师,山区桥梁及隧道工程国家重点实验室研究人员,2019年于重庆大学获得博士学位。主要从事UHPC材料与结构、混凝土结构耐久性、桥梁性能提升等方面的研究工作。主持国家自然科学基金1项、省部级科研项目3项,参研国家重点研发计划、国家杰出青年科学基金、国家自然科学基金重点支持项目等5项。发表学术论文20篇,获国家专利6项。zhangzhongya@cqjtu.edu.cn   
作者简介:  杨俊,工学博士(后),教授,硕士研究生导师,现为重庆交通大学土木工程学院教师、山区桥梁及隧道工程国家重点实验室研究人员,2019年获得重庆交通大学桥梁与隧道工程工学博士学位。主要从事桥梁工程相关的教学科研工作,研究方向包括:旧危桥梁加固与工程结构性能提升;桥梁新结构与超高性能混凝土(UHPC)材料等。发表论文30余篇,主持国家自然科学基金项目2项。
引用本文:    
杨俊, 任伟, 冷景晨, 张中亚, 邹杨, 周建庭, 胡天祥. 超高性能混凝土预应力锚固齿块承压性能研究[J]. 材料导报, 2023, 37(18): 22010146-9.
YANG Jun, REN Wei, LENG Jingchen, ZHANG Zhongya, ZOU Yang, ZHOU Jianting, HU Tianxiang. Research on Local Pressure Performance of Ultra-high Performance Concrete Prestressed Anchor Block. Materials Reports, 2023, 37(18): 22010146-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010146  或          http://www.mater-rep.com/CN/Y2023/V37/I18/22010146
1 Li C X, Feng Z, Guo L C, et al. Highway Transportation Technology. 2020, 37(5), 53(in Chinese).
李传习, 冯峥, 郭立成, 等. 公路交通科技, 2020, 37(5), 53.
2 Kwon Y, Kim J K, Yang J M.Journal of Structural Engineering, 2018, 144(3), 04017219.
3 Feng Z, Li C X, Pan R S, et al. Chinese Journal of Highways, 2021, 34(8), 78(in Chinese).
冯峥, 李传习, 潘仁胜, 等. 中国公路学报, 2021, 34(8), 78.
4 Shao X D, Li F Y, Qiu M H, et al. China Journal of Highway and Transport, 2020, 33(4), 51(in Chinese).
邵旭东, 李芳园, 邱明红, 等. 中国公路学报, 2020, 33(4), 51.
5 Shao X D, Zhang L, Zhang S T, et al.Journal of Hunan University (Na-tural Science Edition), 2016, 43(3), 1(in Chinese).
邵旭东, 张良, 张松涛, 等. 湖南大学学报(自然科学版), 2016, 43(3), 1.
6 Shao X D, Qiu M H, Yan B F, et al.Materials Reports,2017, 31(23), 33(in Chinese).
邵旭东, 邱明红, 晏班夫, 等. 材料导报,2017, 31(23), 33.
7 Nie J, Li C X, Qian G P, et al.Materials Reports, 2021, 35(4),4042(in Chinese).
聂洁, 李传习, 钱国平, 等. 材料导报, 2021, 35(4),4042.
8 Shi J H, Shi C J, Ou Y X, et al.Materials Reports, 2021, 35(3), 3067(in Chinese).
史金华, 史才军, 欧阳雪, 等. 材料导报, 2021, 35(3), 3067.
9 Lu Zhe, Feng Zhengang, Yao Dongdong, et al.Materials Reports, 2020, 34(Z1), 203(in Chinese).
卢喆, 冯振刚, 姚冬冬, 等. 材料导报, 2020, 34(Z1), 203.
10 Zhang L. Research on external prestressed anchorage method of UHPC continuous box girder bridge. Master's Thesis, Hunan University, 2015(in Chinese).
张良. UHPC连续箱梁桥的体外预应力锚固方法研究. 硕士学位论文, 湖南大学, 2015.
11 Van-Meirvenne K, De-Corte W, Boel, V, et al.Engineering Structures, 2018, 172, 764.
12 Zhao J L. Research on force flow model and anti-cracking design method of prestressed anchorage zone of concrete bridge. Master's Thesis, Shanghai Jiao Tong University, China, 2010(in Chinese).
赵建立. 混凝土桥梁预应力锚固区的力流模型及抗裂设计方法研究. 硕士学位论文, 上海交通大学,2010.
13 Hou D W, Zhao J L, Shen J S L, et al.Construction and Building Mate-rials, 2017, 136, 482.
14 Jokūbaitis A, Marcˇiukaitis G, Valivonis J.Procedia Engineering, 2017, 172, 457.
15 Steensels R, Vandewalle L, Vandoren B, et al.Engineering Structures, 2017, 143, 384.
16 Li C X, Feng Z, Pan R, et al. Journal of Bridge Engineering, 2020, 25(6), 04020028.
17 Feng Z, Li C X, Pan R S,et al. Engineering Mechanics. 2020, 37(5), 94(in Chinese).
冯峥, 李传习, 潘仁胜, 等. 工程力学, 2020, 37(5), 94.
18 Technical specifications for the design of ultra-high performance concrete structures. China Concrete and Cement Products Association (draft for comments), Beijing, 2018(in Chinese).
超高性能混凝土结构设计技术规程. 中国混凝土与水泥制品协会(征求意见稿), 北京, 2018.
19 Technical specifications for ultra-high performance concrete (UHPC) bridges for highways. Beijing: China Engineering Construction Standardization Association Highway Branch (draft for comments), 2019(in Chinese).
公路超高性能混凝土(UHPC)桥梁技术规程. 北京:中国工程建设标准化协会公路分会(征求意见稿), 2019.
20 Kim J R, Kwak H G, Kim B S, et al.Advances in Structural Engineering, 2019, 22(2), 323.
21 Hu H B. Experimental study on local compressive bearing capacity of post-tensioned prestressed reactive powder concrete. Master's Thesis, Harbin Institute of Technology, China, 2012(in Chinese).
胡海波. 后张预应力活性粉末混凝土局压承载力试验研究. 硕士学位论文, 哈尔滨工业大学, 2012.
22 AASHTO LRFD bridge design specification (8th edition). Washington, DC: American Association of State Highway and Transportation Officials, 2017.
23 GB 50010-2010, Code for Design of Concrete Structures. Beijing: Ministry of Housing and Urban-Rural Development of the People's Republic of China(in Chinese).
GB 50010-2010, 混凝土结构设计规范. 北京: 中华人民共和国住房和城乡建设部.
24 Yang J, Fang Z. Concrete, 2008(7), 11(in Chinese).
杨剑, 方志. 混凝土, 2008(7), 11.
25 Zhang Z, Shao X D, Li W G, et al. China Journal of Highway and Transport, 2015, 28(8), 50(in Chinese).
张哲, 邵旭东, 李文光, 等. 中国公路学报, 2015, 28(8), 50.
26 Afgc S. Ultra-high performance fibre-reinforced concrete, Pairs, 2013.
27 Engineers J S O C. Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Compositeswith Multiple Fine Cracks (HPFRCC). Japan, 2008.
28 Zheng W Z, Zhang J Z. Journal of Building Structures, 2004, 25(4), 60(in Chinese).
郑文忠, 张吉柱.建筑结构学报, 2004, 25(4), 60.
[1] 袁明, 朱海乐, 颜东煌, 袁晟, 黄练, 刘昀. 钢纤维埋深与类型影响钢纤维-UHPC基体界面粘结性能的试验研究[J]. 材料导报, 2023, 37(16): 22010230-9.
[2] 马兴林, 杨俊, 周建庭, 王劼耘, 张中亚, 苏昊, 王宗山. UHPC与石材的粘结界面抗剪性能试验研究[J]. 材料导报, 2022, 36(24): 21070133-7.
[3] 罗遥凌, 高育欣, 闫欣宜, 谢昱昊, 毕耀. 热养护UHPC后期水稳定性[J]. 材料导报, 2021, 35(Z1): 242-246.
[4] 聂洁, 李传习, 钱国平, 潘仁胜, 裴必达, 邓帅. 钢纤维形状与掺量对UHPC施工及力学特性的影响[J]. 材料导报, 2021, 35(4): 4042-4052.
[5] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[6] 刘扬, 曾丹, 曹磊, 王达. 钢-UHPC组合结构桥梁研究进展[J]. 材料导报, 2021, 35(3): 3104-3113.
[7] 邓宗才, 赵连志, 连怡红. 膨胀剂、减缩剂对超高性能混凝土圆环约束收缩性能的影响[J]. 材料导报, 2021, 35(12): 12070-12074.
[8] 徐彬彬, 欧忠文, 罗伟, 刘娜, 袁旺, 付来平. 饱水轻骨料和减缩剂对UHPC水化过程和自收缩的影响[J]. 材料导报, 2020, 34(22): 22065-22069.
[9] 周昱程, 刘娟红, 纪洪广, 付士峰, 谷峪. 温度-复合盐耦合条件下纤维混凝土井壁冲击倾向性试验研究[J]. 材料导报, 2019, 33(16): 2671-2676.
[10] 朋改非, 牛旭婧, 成铠. 超高性能混凝土的火灾高温性能研究综述*[J]. CLDB, 2017, 31(23): 17-23.
[11] 邵旭东, 邱明红, 晏班夫, 罗军. 超高性能混凝土在国内外桥梁工程中的研究与应用进展*[J]. CLDB, 2017, 31(23): 33-43.
[12] 季韬, 林晓溁, 梁咏宁, 陈宝春, 杨政险. 钢纤维对掺花岗岩石粉UHPC的增强增韧:磷酸锌改性和纤维形状的影响及机理*[J]. CLDB, 2017, 31(23): 66-72.
[13] 王倩楠, 顾春平, 孙伟. 水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律*[J]. CLDB, 2017, 31(23): 85-89.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed