Abstract: With the development of 5G communication, thermal management has become an increasingly severe problem in electronic devices. Boron nitride (BN) is a category of high-thermal-conductivity (TC) and highly insulating thermally conductive fillers widely used in thermal management, including hexagonal boron nitride (h-BN), boron nitride nanosheets (BNNSs), and boron nitride nanotubes (BNNTs). However, the BN surface is chemically inert, and its low affinity and phonon-spectrum mismatch with the matrix or other fillers lead to significant interfacial thermal resistance (ITR) between the filler and matrix/filler, which limits the enhancement of TC of the composites and makes it difficult to meet usage requirements. Therefore, how to regulate the ITR, design the thermal conductivity interface of BN/polymer thermally conductive composites, and improve the thermal conductivity of the composites is a current challenge. Researchers have explored the differences and causes of heat-flow conduction at the interface from two separate perspectives: theoretical simulation and experimental verification. In theoretical studies, molecular dynamics (MD) simulations and finite element analysis (FEA) methods combined with models such as effective medium model and its optimization model, Foygel model, are used for in-depth theoretical simulation and analysis of ITR. Among these, the key parameters affecting ITR include BN content, size and crystal state, and BN distribution morphology, among others. In experimental design, to improve the ITR between the filler and substrate, the BN surface is first modified by covalent bonding or surface coating, and then the corresponding functional groups are designed to improve the interfacial force with the polymer in combination with the polymer species. Among these, the covalent bonding modification of the BN surface causes some damage to the BN crystal structure itself, while surface coating can better maintain the BN structure. To improve the ITR between fillers, researchers often use strategies such as BN orientation arrangement, bridging, and construction of three-dimensional (3D) thermal network structure to improve the contact between fillers. The bridging method is used to connect the separated BN to each other to build better thermal conductivity paths by forming heterogeneous structures in the matrix. Methods of building 3D thermal network structures that can create long-range continuous thermal conductivity paths have been widely developed in recent years and include the ice template method, salt templates, the foaming strategy, building a gel network, and two-phase/three-phase isolated structure. The current level of research progress is summarized in this review. First, we summarize the models used to calculate the thermal resistance of the BN/polymer interface and the progress of related simulations, and summarize the strategies for optimizing ITR of polymer/BN thermally conductive composites from two separate perspectives, i.e., those of ITR between the filler and matrix/filler. In addition, we compare the effect of various methods on improving the TC of composites and look forward to the development trend of low-ITR and high-TC composites.
张荣, 刘卓航, 熊文伟, 林乾辉, 何学航, 李思琦, 刘清亭, 付旭东, 胡圣飞. 氮化硼/聚合物导热复合材料界面热阻调控研究进展[J]. 材料导报, 2023, 37(18): 21080118-13.
ZHANG Rong, LIU Zhuohang, XIONG Wenwei, LIN Qianhui, HE Xuehang, LI Siqi, LIU Qingting, FU Xudong, HU Shengfei. Recent Progress of Interface Thermal Resistance Regulation of Thermally Conductive Composites Based on Boron Nitride/Polymer. Materials Reports, 2023, 37(18): 21080118-13.
1 Cui Z W, Yuan G M, Dong Z J, et al. Materials China, 2020, 39(6), 450 (in Chinese). 崔正威, 袁观明, 董志军,等. 中国材料进展, 2020, 39(6), 450. 2 Jiang P K, Chen J, Huang X Y. High Voltage Engineering, 2017, 43(9), 2791 (in Chinese). 江平开, 陈金, 黄兴溢.高电压技术, 2017, 43(9), 2791. 3 Fang H M, Bai S L, Wong C P. Composites Part A: Applied Science and Manufacturing, 2017, 100, 71. 4 Shi X T, Zhang R H, Ruan K P, et al. Journal of Materials Science & Technology, 2021, 82, 239. 5 Su K H, Su C Y, Chi P W, et al. Materials, 2021, 14(2), 238. 6 Guo H C, Zhao H Y, Niu H Y, et al. ACS Nano, 2021, 15(4), 6917. 7 Ruan K, Shi X, Guo Y, et al. Composites Communications, 2020, 22, 100518. 8 Nan C W, Birringer R, Clarke D R, et al. Journal of Applied Physics, 1997, 81(10), 6692. 9 Liu J, Guo Y, Weng C, et al. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105684. 10 Feng Y, Han G, Wang B, et al. Chemical Engineering Journal, 2020, 379, 122402. 11 Zhao L, Yan L, Wei C, et al. The Journal of Physical Chemistry C, 2020, 124(23), 12723. 12 Xie S H, Liu Y Y, Li J Y. Applied Physics Letters, 2008, 92(24), 243121. 13 Shahil K M F, Balandin A A. Nano Letters, 2012, 12(2), 861. 14 Nan C W, Liu G, Lin Y, et al. Applied Physics Letters, 2004, 85(16), 3549. 15 Bryning M B, Milkie D E, Islam M F, et al. Applied Physics Letters, 2005, 87(16), 161909. 16 Deng F, Zheng Q S, Wang L F, et al. Applied Physics Letters, 2007, 90(2), 021914. 17 Liu Z, Li J, Liu X. ACS Applied Materials & Interfaces, 2020, 12(5), 6503. 18 Ding D, Shang Z, Zhang X, et al. Ceramics International, 2020, 46(18), 28363. 19 Wang R, Xie C, Luo S, et al. Materials Today Communications, 2020, 24, 100985. 20 Huang J, Gao M, Pan T, et al. Composites Science and Technology, 2014, 95, 16. 21 Cai X, Dong X, Lv W, et al. Composites Communications, 2020, 17, 163. 22 Faroughi S A, Huber C. Journal of Applied Physics, 2015, 117(5), 055104. 23 Luo F, Wu K, Shi J, et al. Journal of Materials Chemistry A, 2017, 5(35), 18542. 24 Wang Z G, Liu W, Liu Y H, et al. Composites Part B: Engineering, 2020, 180, 107569. 25 Hashin Z, Shtrikman S. Journal of the Mechanics and Physics of Solids, 1963, 11(2), 127. 26 Ngo I L, Vattikuti S V P, Byon C. International Journal of Heat and Mass Transfer, 2017, 114, 727. 27 Guo Y, Lyu Z, Yang X, et al. Composites Part B: Engineering, 2019, 164, 732. 28 Lu Y, Cao J, Ren S, et al. Composites Science and Technology, 2021, 201, 108536. 29 Hamilton R L, Crosser O K. Industrial & Engineering Chemistry Fundamentals, 1962, 1(3), 187. 30 Hasselman D P H, Johnson L F. Journal of Composite Materials, 1987, 21(6), 508. 31 Wang J J, Yi X S. Composites Science and Technology, 2004, 64(10-11), 1623. 32 Zeng X, Yao Y, Gong Z, et al. Small, 2015, 11(46), 6205. 33 Hu J, Huang Y, Yao Y, et al. ACS Applied Materials & Interfaces, 2017, 9(15), 13544. 34 Foygel M, Morris R D, Anez D, et al. Physical Review B, 2005, 71(10), 104201. 35 An D, Cheng S, Zhang Z, et al. Carbon, 2019, 155, 258. 36 An D, Duan X, Cheng S, et al. Composites Part A: Applied Science and Manufacturing, 2020, 135, 105928. 37 Wang Y, Wu W, Drummer D, et al. Materials & Design, 2020, 191, 108698. 38 Xu X, Hu R, Chen M, et al. Chemical Engineering Journal, 2020, 397, 125447. 39 Zhan L, Li J, Zhou C, et al. International Journal of Heat and Mass Transfer, 2018, 126, 353. 40 Yang X, Wang X, Wang W, et al. International Journal of Heat and Mass Transfer, 2020, 159, 120105. 41 Zhang W, Li H, Jiang H, et al. Langmuir, 2021, 37(41), 12038. 42 Chaurasia A, Parashar A. International Journal of Heat and Mass Transfer, 2021, 170, 121039. 43 Ma X, Wu S, Yi Z, et al. International Journal of Heat and Mass Transfer, 2019, 137, 790. 44 Pan Z, Tao Y, Zhao Y, et al. Nano Letters, 2021, 21(17), 7317. 45 Li M, Liu J, Yu W, et al. International Journal of Heat and Mass Transfer, 2021, 171, 121043. 46 Ma R, Wan X, Zhang T, et al. ACS Omega, 2018, 3(10), 12530. 47 Eshkalak K E, Sadeghzadeh S, Jalaly M. Computational Materials Science, 2020, 174, 109484. 48 Hu Q, Bai X, Zhang C, et al. Composites Part A: Applied Science and Manufacturing, 2022, 152, 106681. 49 Wang D, Liu D, Xu J H, et al. Materials Horizons, 2022, 9, 640. 50 Lu X, Fu X, Lu J, et al. Nanotechnology, 2021, 32(26), 265708. 51 Yao Y, Zeng X, Guo K, et al. Composites Part A: Applied Science and Manufacturing, 2015, 69, 49. 52 He G, Tian X, Dai Y, et al. Applied Surface Science, 2019, 493, 679. 53 Tian X, Wu N, Zhang B, et al. Chemical Engineering Journal, 2021, 408, 127360. 54 Zhang Y, Choi J R, Park S J. Polymer, 2018, 143, 1. 55 Kuo C F J, Dewangga G R S, Chen J B. Textile Research Journal, 2019, 89(13), 2637. 56 He X, Wang Y. Industrial & Engineering Chemistry Research, 2021, 60(3), 1137. 57 Jiang Y, Shi X, Feng Y, et al. Composites Part A: Applied Science and Manufacturing, 2018, 107, 657. 58 Ou X, Chen S, Lu X, et al. Composites Communications, 2021, 23, 100549. 59 Jiang F, Cui X, Song N, et al. Composites Communications, 2020, 20, 100350. 60 Yao Y, Sun J, Zeng X, et al. Small, 2018, 14(13), 1704044. 61 Pietrak K, Wisniewski T S. Journal of Power Technologies, 2015, 95(1), 14. 62 Yang D, Ni Y, Kong X, et al. Composites Science and Technology, 2019, 177, 18. 63 Yang D, Kong X, Ni Y, et al. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105447. 64 Ni Y, Yang D, Hu T, et al. Composites Communications, 2019, 16, 132. 65 Zhang Y, Tuo R, Yang W, et al. Polymer Composites, 2020, 41(11), 4727. 66 Kim Y, Kim J. Polymers, 2020, 12(6), 1410. 67 Liang Y, Liu B, Zhang B, et al. International Journal of Heat and Mass Transfer, 2021, 164, 120533. 68 Yang D, Wei Q, Yu L, et al. Composites Science and Technology, 2021, 202, 108590. 69 Zhang J, Li C, Yu C, et al. Composites Science and Technology, 2019, 169, 167. 70 Si W, Sun J, He X, et al. Journal of Materials Chemistry C, 2020, 8(10), 3463. 21080118-1271 Tessema A, Zhao D, Moll J, et al. Polymer Testing, 2017, 57, 101. 72 Fu C, Li Q, Lu J, et al. Composites Science and Technology, 2018, 165, 322. 73 An D, Cheng S, Jiang C, et al. Journal of Materials Chemistry C, 2020, 8(14), 4801. 74 Cho J K, Sun H, Seo H W, et al. Soft Matter, 2020, 16(29), 6812. 75 Yu C, Gong W, Tian W, et al. Composites Science and Technology, 2018, 160, 199. 76 Haruki M, Tada J, Funaki R, et al. Thermochimica Acta, 2020, 684, 178491. 77 Yang G, Zhang X, Shang Y, et al. Composites Science and Technology, 2021, 201, 108521. 78 Chen J, Huang X, Sun B, et al. ACS Nano, 2018, 13(1), 337. 79 Zhong B, Zou J, An L, et al. Composites Part A: Applied Science and Manufacturing, 2019, 127, 105629. 80 Gao Y, Zhang M, Chen X, et al. Chemical Engineering Journal, 2021, 426, 131280. 81 Wu K, Wang J, Liu D, et al. Advanced Materials, 2020, 32(8), 1906939. 82 Xiao C, Guo Y, Tang Y, et al. Composites Part B: Engineering, 2020, 187, 107855. 83 Han Y X, Shi X T, Wang S S, et al. Composites Part B: Engineering, 2021, 210, 108666. 84 Li J, Yin J, Liu X, et al. Composites Part A: Applied Science and Manufacturing, 2020, 128, 105660. 85 Liu D X, Ma C G, Chi H T, et al. RSC Advances, 2020, 10(69), 42584. 86 Fu C J, Yan C Z, Ren L L, et al. Composites Science and Technology, 2019, 177, 118. 87 Chen X L, Lim J S K, Yan W L, et al. ACS Applied Materials & Interfaces, 2020, 12(14), 16987. 88 Gao C, Zhu Z H, Shen Y C, et al. Composites Part B: Engineering, 2020, 198, 108232. 89 Li J C, Li F Z, Zhao X Y, et al. ACS Applied Electronic Materials, 2020, 2(6), 1661. 90 Dong J, Cao L, Li Y, et al. Composites Science and Technology, 2020, 196, 108242. 91 Pan D, Li Q M, Zhang W, et al. Composites Part B: Engineering, 2021, 209, 108609. 92 Liu B C, Li Y B, Fei T, et al. Chemical Engineering Journal, 2020, 385, 123829. 93 Li X, Li C H, Zhang X M, et al. Chemical Engineering Journal, 2020, 390, 124563. 94 Yang L, Zhang L, Li C. Composites Science and Technology, 2020, 200, 108429. 95 Yin C G, Liu Z J, Mo R, et al. Polymer, 2020, 195, 122455. 96 Song Q, Zhu W, Deng Y, et al. Composites Part A: Applied Science and Manufacturing, 2019, 127, 105654. 97 Liu D, Lei C, Wu K, et al. ACS Nano, 2020, 14(11), 15738. 98 Dai W, Lv L, Ma T, et al. Advanced Science, 2021, 8(7), 2003734. 99 Ying J, Tan X, Lv L, et al. ACS Nano, 2021, 15(8), 12922.