Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 21080118-13    https://doi.org/10.11896/cldb.21080118
  高分子与聚合物基复合材料 |
氮化硼/聚合物导热复合材料界面热阻调控研究进展
张荣*, 刘卓航, 熊文伟, 林乾辉, 何学航, 李思琦, 刘清亭, 付旭东, 胡圣飞
湖北工业大学绿色轻工材料湖北省重点实验室,武汉 430068
Recent Progress of Interface Thermal Resistance Regulation of Thermally Conductive Composites Based on Boron Nitride/Polymer
ZHANG Rong*, LIU Zhuohang, XIONG Wenwei, LIN Qianhui, HE Xuehang, LI Siqi, LIU Qingting, FU Xudong, HU Shengfei
Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
下载:  全 文 ( PDF ) ( 11866KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着5G时代的发展,电子器件领域的热管理问题日发严峻。氮化硼(BN)是一类高热导率(TC)、高绝缘的导热填料,广泛应用于热管理领域,包括六方氮化硼(h-BN)、氮化硼纳米片(BNNS)和氮化硼纳米管(BNNT)。然而,BN表面呈化学惰性,其与基体或其他填料间亲和力低、声子谱失配等,导致了填料与基体/填料间存在明显的界面热阻,限制了复合材料TC的提升,难以满足使用要求。因此,如何调控界面热阻、设计BN/聚合物导热复合材料的热传导界面,并提高复合材料的导热能力是当前亟待解决的难题。
   研究者分别从理论模拟与实验验证两个角度对热流在界面传导的差异及其原因进行探索。在理论研究中,将分子动力学(MD)模拟及有限元模拟(FEA)等方法结合有效介质模型及其优化模型、Foygel模型等能够对界面热阻(ITR)进行深入的理论模拟与分析;其中,影响界面热阻的关键参数包括BN含量、尺寸及晶体状态、BN的分布形貌等。在实验设计中,为了改善填料与基体间界面热阻,首先对BN表面共价键改性或表面包覆,随后结合聚合物种类设计相应的官能团来改善BN与聚合物的界面作用力;其中BN表面的共价键改性对BN本身晶体结构有一定的破坏,表面包覆则能够较好地保持BN结构。为了改善填料与填料间界面热阻,研究者常采用BN的定向排列、桥接、构建3D导热网络结构等策略来改善填料间的接触,其中BN的定向排列法充分利用BN的各向异性、增大填料间的有效接触面积,能够显著提升复合材料某一方向的TC;桥接法是将彼此分离的BN相互连接,通过在基体中形成异质结构来构建更为完善的导热路径;构建3D导热网络结构的方法近年来已被广泛研究,其能够创建长程连续的导热路径,具体方法包括冰模板法、盐模板、发泡策略、构建凝胶网络和两相/三相隔离结构等。
   综合目前研究进展,本文首先归纳了计算BN/聚合物界面热阻的模型及相关模拟的进展,并从填料与基体及填料与填料间的界面热阻两个角度,分别总结了改善聚合物/BN导热复合材料界面热阻的策略,对比了各种方法对复合材料导热性能的改善效果,并展望了低界面热阻与高导热复合材料的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张荣
刘卓航
熊文伟
林乾辉
何学航
李思琦
刘清亭
付旭东
胡圣飞
关键词:  导热复合材料  氮化硼(BN)  聚合物  填料与基体间界面热阻(ITRF-M)  填料与填料间界面热阻(ITRF-F)    
Abstract: With the development of 5G communication, thermal management has become an increasingly severe problem in electronic devices. Boron nitride (BN) is a category of high-thermal-conductivity (TC) and highly insulating thermally conductive fillers widely used in thermal management, including hexagonal boron nitride (h-BN), boron nitride nanosheets (BNNSs), and boron nitride nanotubes (BNNTs). However, the BN surface is chemically inert, and its low affinity and phonon-spectrum mismatch with the matrix or other fillers lead to significant interfacial thermal resistance (ITR) between the filler and matrix/filler, which limits the enhancement of TC of the composites and makes it difficult to meet usage requirements. Therefore, how to regulate the ITR, design the thermal conductivity interface of BN/polymer thermally conductive composites, and improve the thermal conductivity of the composites is a current challenge.
Researchers have explored the differences and causes of heat-flow conduction at the interface from two separate perspectives: theoretical simulation and experimental verification. In theoretical studies, molecular dynamics (MD) simulations and finite element analysis (FEA) methods combined with models such as effective medium model and its optimization model, Foygel model, are used for in-depth theoretical simulation and analysis of ITR. Among these, the key parameters affecting ITR include BN content, size and crystal state, and BN distribution morphology, among others. In experimental design, to improve the ITR between the filler and substrate, the BN surface is first modified by covalent bonding or surface coating, and then the corresponding functional groups are designed to improve the interfacial force with the polymer in combination with the polymer species. Among these, the covalent bonding modification of the BN surface causes some damage to the BN crystal structure itself, while surface coating can better maintain the BN structure. To improve the ITR between fillers, researchers often use strategies such as BN orientation arrangement, bridging, and construction of three-dimensional (3D) thermal network structure to improve the contact between fillers. The bridging method is used to connect the separated BN to each other to build better thermal conductivity paths by forming heterogeneous structures in the matrix. Methods of building 3D thermal network structures that can create long-range continuous thermal conductivity paths have been widely developed in recent years and include the ice template method, salt templates, the foaming strategy, building a gel network, and two-phase/three-phase isolated structure.
The current level of research progress is summarized in this review. First, we summarize the models used to calculate the thermal resistance of the BN/polymer interface and the progress of related simulations, and summarize the strategies for optimizing ITR of polymer/BN thermally conductive composites from two separate perspectives, i.e., those of ITR between the filler and matrix/filler. In addition, we compare the effect of various methods on improving the TC of composites and look forward to the development trend of low-ITR and high-TC composites.
Key words:  thermally conductive composites    boron nitride (BN)    polymer    interfacial thermal resistance between filler and matrix (ITRF-M)    interfacial thermal resistance between filler and filler (ITRF-F)
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51503061);湖北省自然科学基金(2015CFB322;2015BAA094);武汉市知识创新专项(2022010801020261)
通讯作者:  *张荣,湖北工业大学教授。主要研究领域为聚合物基导电、导热功能复合材料及聚合物材料的改性与加工。目前主持国家自然科学基金项目1项,主持完成省部级项目2项,企业合作项目4项。发表学术论文65余篇,以第一或通信作者发表30篇,其中SCI、EI论文29篇。获国家发明专利8项。zhangrong@hbut.edu.cn   
引用本文:    
张荣, 刘卓航, 熊文伟, 林乾辉, 何学航, 李思琦, 刘清亭, 付旭东, 胡圣飞. 氮化硼/聚合物导热复合材料界面热阻调控研究进展[J]. 材料导报, 2023, 37(18): 21080118-13.
ZHANG Rong, LIU Zhuohang, XIONG Wenwei, LIN Qianhui, HE Xuehang, LI Siqi, LIU Qingting, FU Xudong, HU Shengfei. Recent Progress of Interface Thermal Resistance Regulation of Thermally Conductive Composites Based on Boron Nitride/Polymer. Materials Reports, 2023, 37(18): 21080118-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080118  或          http://www.mater-rep.com/CN/Y2023/V37/I18/21080118
1 Cui Z W, Yuan G M, Dong Z J, et al. Materials China, 2020, 39(6), 450 (in Chinese).
崔正威, 袁观明, 董志军,等. 中国材料进展, 2020, 39(6), 450.
2 Jiang P K, Chen J, Huang X Y. High Voltage Engineering, 2017, 43(9), 2791 (in Chinese).
江平开, 陈金, 黄兴溢.高电压技术, 2017, 43(9), 2791.
3 Fang H M, Bai S L, Wong C P. Composites Part A: Applied Science and Manufacturing, 2017, 100, 71.
4 Shi X T, Zhang R H, Ruan K P, et al. Journal of Materials Science & Technology, 2021, 82, 239.
5 Su K H, Su C Y, Chi P W, et al. Materials, 2021, 14(2), 238.
6 Guo H C, Zhao H Y, Niu H Y, et al. ACS Nano, 2021, 15(4), 6917.
7 Ruan K, Shi X, Guo Y, et al. Composites Communications, 2020, 22, 100518.
8 Nan C W, Birringer R, Clarke D R, et al. Journal of Applied Physics, 1997, 81(10), 6692.
9 Liu J, Guo Y, Weng C, et al. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105684.
10 Feng Y, Han G, Wang B, et al. Chemical Engineering Journal, 2020, 379, 122402.
11 Zhao L, Yan L, Wei C, et al. The Journal of Physical Chemistry C, 2020, 124(23), 12723.
12 Xie S H, Liu Y Y, Li J Y. Applied Physics Letters, 2008, 92(24), 243121.
13 Shahil K M F, Balandin A A. Nano Letters, 2012, 12(2), 861.
14 Nan C W, Liu G, Lin Y, et al. Applied Physics Letters, 2004, 85(16), 3549.
15 Bryning M B, Milkie D E, Islam M F, et al. Applied Physics Letters, 2005, 87(16), 161909.
16 Deng F, Zheng Q S, Wang L F, et al. Applied Physics Letters, 2007, 90(2), 021914.
17 Liu Z, Li J, Liu X. ACS Applied Materials & Interfaces, 2020, 12(5), 6503.
18 Ding D, Shang Z, Zhang X, et al. Ceramics International, 2020, 46(18), 28363.
19 Wang R, Xie C, Luo S, et al. Materials Today Communications, 2020, 24, 100985.
20 Huang J, Gao M, Pan T, et al. Composites Science and Technology, 2014, 95, 16.
21 Cai X, Dong X, Lv W, et al. Composites Communications, 2020, 17, 163.
22 Faroughi S A, Huber C. Journal of Applied Physics, 2015, 117(5), 055104.
23 Luo F, Wu K, Shi J, et al. Journal of Materials Chemistry A, 2017, 5(35), 18542.
24 Wang Z G, Liu W, Liu Y H, et al. Composites Part B: Engineering, 2020, 180, 107569.
25 Hashin Z, Shtrikman S. Journal of the Mechanics and Physics of Solids, 1963, 11(2), 127.
26 Ngo I L, Vattikuti S V P, Byon C. International Journal of Heat and Mass Transfer, 2017, 114, 727.
27 Guo Y, Lyu Z, Yang X, et al. Composites Part B: Engineering, 2019, 164, 732.
28 Lu Y, Cao J, Ren S, et al. Composites Science and Technology, 2021, 201, 108536.
29 Hamilton R L, Crosser O K. Industrial & Engineering Chemistry Fundamentals, 1962, 1(3), 187.
30 Hasselman D P H, Johnson L F. Journal of Composite Materials, 1987, 21(6), 508.
31 Wang J J, Yi X S. Composites Science and Technology, 2004, 64(10-11), 1623.
32 Zeng X, Yao Y, Gong Z, et al. Small, 2015, 11(46), 6205.
33 Hu J, Huang Y, Yao Y, et al. ACS Applied Materials & Interfaces, 2017, 9(15), 13544.
34 Foygel M, Morris R D, Anez D, et al. Physical Review B, 2005, 71(10), 104201.
35 An D, Cheng S, Zhang Z, et al. Carbon, 2019, 155, 258.
36 An D, Duan X, Cheng S, et al. Composites Part A: Applied Science and Manufacturing, 2020, 135, 105928.
37 Wang Y, Wu W, Drummer D, et al. Materials & Design, 2020, 191, 108698.
38 Xu X, Hu R, Chen M, et al. Chemical Engineering Journal, 2020, 397, 125447.
39 Zhan L, Li J, Zhou C, et al. International Journal of Heat and Mass Transfer, 2018, 126, 353.
40 Yang X, Wang X, Wang W, et al. International Journal of Heat and Mass Transfer, 2020, 159, 120105.
41 Zhang W, Li H, Jiang H, et al. Langmuir, 2021, 37(41), 12038.
42 Chaurasia A, Parashar A. International Journal of Heat and Mass Transfer, 2021, 170, 121039.
43 Ma X, Wu S, Yi Z, et al. International Journal of Heat and Mass Transfer, 2019, 137, 790.
44 Pan Z, Tao Y, Zhao Y, et al. Nano Letters, 2021, 21(17), 7317.
45 Li M, Liu J, Yu W, et al. International Journal of Heat and Mass Transfer, 2021, 171, 121043.
46 Ma R, Wan X, Zhang T, et al. ACS Omega, 2018, 3(10), 12530.
47 Eshkalak K E, Sadeghzadeh S, Jalaly M. Computational Materials Science, 2020, 174, 109484.
48 Hu Q, Bai X, Zhang C, et al. Composites Part A: Applied Science and Manufacturing, 2022, 152, 106681.
49 Wang D, Liu D, Xu J H, et al. Materials Horizons, 2022, 9, 640.
50 Lu X, Fu X, Lu J, et al. Nanotechnology, 2021, 32(26), 265708.
51 Yao Y, Zeng X, Guo K, et al. Composites Part A: Applied Science and Manufacturing, 2015, 69, 49.
52 He G, Tian X, Dai Y, et al. Applied Surface Science, 2019, 493, 679.
53 Tian X, Wu N, Zhang B, et al. Chemical Engineering Journal, 2021, 408, 127360.
54 Zhang Y, Choi J R, Park S J. Polymer, 2018, 143, 1.
55 Kuo C F J, Dewangga G R S, Chen J B. Textile Research Journal, 2019, 89(13), 2637.
56 He X, Wang Y. Industrial & Engineering Chemistry Research, 2021, 60(3), 1137.
57 Jiang Y, Shi X, Feng Y, et al. Composites Part A: Applied Science and Manufacturing, 2018, 107, 657.
58 Ou X, Chen S, Lu X, et al. Composites Communications, 2021, 23, 100549.
59 Jiang F, Cui X, Song N, et al. Composites Communications, 2020, 20, 100350.
60 Yao Y, Sun J, Zeng X, et al. Small, 2018, 14(13), 1704044.
61 Pietrak K, Wisniewski T S. Journal of Power Technologies, 2015, 95(1), 14.
62 Yang D, Ni Y, Kong X, et al. Composites Science and Technology, 2019, 177, 18.
63 Yang D, Kong X, Ni Y, et al. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105447.
64 Ni Y, Yang D, Hu T, et al. Composites Communications, 2019, 16, 132.
65 Zhang Y, Tuo R, Yang W, et al. Polymer Composites, 2020, 41(11), 4727.
66 Kim Y, Kim J. Polymers, 2020, 12(6), 1410.
67 Liang Y, Liu B, Zhang B, et al. International Journal of Heat and Mass Transfer, 2021, 164, 120533.
68 Yang D, Wei Q, Yu L, et al. Composites Science and Technology, 2021, 202, 108590.
69 Zhang J, Li C, Yu C, et al. Composites Science and Technology, 2019, 169, 167.
70 Si W, Sun J, He X, et al. Journal of Materials Chemistry C, 2020, 8(10), 3463.
21080118-1271 Tessema A, Zhao D, Moll J, et al. Polymer Testing, 2017, 57, 101.
72 Fu C, Li Q, Lu J, et al. Composites Science and Technology, 2018, 165, 322.
73 An D, Cheng S, Jiang C, et al. Journal of Materials Chemistry C, 2020, 8(14), 4801.
74 Cho J K, Sun H, Seo H W, et al. Soft Matter, 2020, 16(29), 6812.
75 Yu C, Gong W, Tian W, et al. Composites Science and Technology, 2018, 160, 199.
76 Haruki M, Tada J, Funaki R, et al. Thermochimica Acta, 2020, 684, 178491.
77 Yang G, Zhang X, Shang Y, et al. Composites Science and Technology, 2021, 201, 108521.
78 Chen J, Huang X, Sun B, et al. ACS Nano, 2018, 13(1), 337.
79 Zhong B, Zou J, An L, et al. Composites Part A: Applied Science and Manufacturing, 2019, 127, 105629.
80 Gao Y, Zhang M, Chen X, et al. Chemical Engineering Journal, 2021, 426, 131280.
81 Wu K, Wang J, Liu D, et al. Advanced Materials, 2020, 32(8), 1906939.
82 Xiao C, Guo Y, Tang Y, et al. Composites Part B: Engineering, 2020, 187, 107855.
83 Han Y X, Shi X T, Wang S S, et al. Composites Part B: Engineering, 2021, 210, 108666.
84 Li J, Yin J, Liu X, et al. Composites Part A: Applied Science and Manufacturing, 2020, 128, 105660.
85 Liu D X, Ma C G, Chi H T, et al. RSC Advances, 2020, 10(69), 42584.
86 Fu C J, Yan C Z, Ren L L, et al. Composites Science and Technology, 2019, 177, 118.
87 Chen X L, Lim J S K, Yan W L, et al. ACS Applied Materials & Interfaces, 2020, 12(14), 16987.
88 Gao C, Zhu Z H, Shen Y C, et al. Composites Part B: Engineering, 2020, 198, 108232.
89 Li J C, Li F Z, Zhao X Y, et al. ACS Applied Electronic Materials, 2020, 2(6), 1661.
90 Dong J, Cao L, Li Y, et al. Composites Science and Technology, 2020, 196, 108242.
91 Pan D, Li Q M, Zhang W, et al. Composites Part B: Engineering, 2021, 209, 108609.
92 Liu B C, Li Y B, Fei T, et al. Chemical Engineering Journal, 2020, 385, 123829.
93 Li X, Li C H, Zhang X M, et al. Chemical Engineering Journal, 2020, 390, 124563.
94 Yang L, Zhang L, Li C. Composites Science and Technology, 2020, 200, 108429.
95 Yin C G, Liu Z J, Mo R, et al. Polymer, 2020, 195, 122455.
96 Song Q, Zhu W, Deng Y, et al. Composites Part A: Applied Science and Manufacturing, 2019, 127, 105654.
97 Liu D, Lei C, Wu K, et al. ACS Nano, 2020, 14(11), 15738.
98 Dai W, Lv L, Ma T, et al. Advanced Science, 2021, 8(7), 2003734.
99 Ying J, Tan X, Lv L, et al. ACS Nano, 2021, 15(8), 12922.
[1] 黄怡萱, 于鹏, 周正难, 王珍高, 宁成云. 导电聚合物基抗菌复合材料的合成及生物医用研究进展[J]. 材料导报, 2023, 37(9): 21090198-9.
[2] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[3] 魏铭, 张长森, 王旭, 诸华军, 焦宝祥, 孙楠. 微纳米材料改性地质聚合物的研究进展[J]. 材料导报, 2023, 37(4): 21020065-10.
[4] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[5] 昌姗, 崔学民, 贺艳, 苏俏俏, 窦怀远. 碳酸酐酶在地质聚合物微球表面的固定及活性表征[J]. 材料导报, 2023, 37(3): 21030043-7.
[6] 曹金安, 王景平, 徐友龙, 邵亮, 郭思琪, 王学川. 天然可生物降解聚合物壁材在微胶囊中的应用[J]. 材料导报, 2023, 37(18): 22010221-19.
[7] 陈点, 吕仕铭, 汪羽翎. 非共价键化学修饰碳纳米管的分散及其机理[J]. 材料导报, 2023, 37(17): 22040300-18.
[8] 张枫烨, 张耀君, 贺攀阳, 高江雨. 新型地质聚合物基分离膜的制备与应用研究进展[J]. 材料导报, 2023, 37(14): 21090154-13.
[9] 蒋尊宇, 盛扬, 孙一新, 李坚, Mark Bradley, 张嵘. 包载荧光共轭聚合物的阳离子聚合物纳米微球的合成及协同抗菌效果研究[J]. 材料导报, 2023, 37(14): 22010234-9.
[10] 何晓龙, 陈志谦, 李璐, 石一非. 基于聚合物-陶瓷复合材料的异形龙伯透镜天线的研究及制造[J]. 材料导报, 2023, 37(12): 21100228-6.
[11] 陈楚童, 罗永明, 徐彩虹. 硅基陶瓷前驱体用于耐高温连接材料研究进展[J]. 材料导报, 2023, 37(11): 21060160-9.
[12] 吕邦成, 郭丽萍, 丁聪, 吴建东, 曹园章, 陈波. 高延性地质聚合物复合材料性能及微结构研究进展[J]. 材料导报, 2023, 37(10): 21060226-11.
[13] 马彬, 衣兆林, 牛海华, 黄启钦. 高温下SiO2气凝胶改性地聚合物的物理力学性能研究[J]. 材料导报, 2023, 37(10): 21110251-6.
[14] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[15] 杨卫, 徐呈祥, 陈则胜, 聂正稳, 董兵海. 基于生物聚合物伤口敷料的研究及应用进展[J]. 材料导报, 2022, 36(Z1): 21100217-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed