Pre-corrosion Fatigue Life Prediction of 2198-T8 Aluminum-Lithium Alloy Based on Morphological Characteristics of Corrosion Pits
CHEN Yajun1,*, WEI Disheng2, PENG Jianshu1, SONG Xianjie1
1 Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China 2 China Rong Tong Academy of Sciences Group Corporation Limited, Beijing 100036, China
Abstract: The fatigue life of 2198-T8 aluminum-lithium alloy was tested by the pre-corrosion fatigue test under a salt spray environment, and the corrosion fatigue life was predicted based on the morphology of corrosion pits. The results show that under the same corrosion environment parameters, the length, width and depth of the pits all satisfy the log-normal distribution. The pit shape was simplified into a semi-ellipsoidal geometric model, combined with the test life data; through ABAQUS finite element simulation, digital image correlation crack monitoring technology and theoretical calculations, the equivalent between the pit depth and the equivalent initial crack length was obtained. Finally, the Paris formula is used to predict the life of the pre-corroded fatigue specimens under different parameters, and the prediction results are all within 1.5 times the dispersion zone.
1 Wang W, Zhang L. Nonferrous Metals Processing, 2019, 48(2), 3 (in Chinese). 王伟, 张蕾. 有色金属加工, 2019, 48(2), 3. 2 Chemin A E A, Saconi F, Bose F W W, et al. Engineering Fracture Mechanics, 2015, 141, 274. 3 Ma S H, Hui L, Zhou S, et al. Journal of Materials Engineering, 2015, 43(2), 91 (in Chinese). 马少华, 回丽, 周松, 等. 材料工程, 2015, 43(2), 91. 4 Sharma M M, Tomedi J D, Parks J M. Corrosion Science, 2015, 93, 180. 5 Mishra R K. Materials Today: Proceedings, 2020, 25, 602. 6 Zhang S, Zhang T, He Y, et al. International Journal of Fatigue, 2019, 129, 105225. 7 Zhang S, Zhang T, He Y, et al. Journal of Alloys and Compounds, 2019, 802, 511. 8 Zhou S, Wang L, Ma C, et al. Journal of Materials Engineering, 2016, 44(6), 98 (in Chinese). 周松, 王磊, 马闯, 等.材料工程, 2016, 44(6), 8. 9 Arunachalam S, Fawaz S. International Journal of Fatigue, 2016, 91, 50. 10 Yap B W, Sim C H. Journal of Statistical Computation and Simulation, 2011, 81(12), 2141. 11 Yuan K L, Jiang Y, Liu J Y, et al. Theoretical and Applied Fracture Mechanics, 2020, 110, 102808. 12 Pook L. Metal fatigue, Springer, Netherlands, 2007. 13 Irwin G R. Journal of Applied Mechanics, 1962, 29(4), 651. 14 CAE. Stress intensity factor handbook, Science Press, China, 1981 (in Chinese). 中国航空研究院. 应力强度因子手册, 科学出版社, 1981. 15 Cherepanov G P. Journal of Applied Mathematics and Mechanics, 1967, 31(3), 503. 16 Ma Y E, Zhao Z, Liu B, et al. Materials Science & Engineering A, 2013, 569, 41. 17 Gruenberg K M,Craig B A, Hillberry B M, et al. International Journal of Fatigue, 2003, 26(6), 629. 18 Duquesnay D L, Underhill P R, Britt H J. International Journal of Fatigue, 2003, 25(5), 371. 19 Crawford B R, Loader C, Ward A R, et al. Fatigue & Fracture of Engineering Materials & Structures, 2005, 28(9), 795. 20 Kaleva O, Orelma H. Probabilistic Engineering Mechanics, 2021, 63, 103117. 21 Gazenbiller E, Arya V, Reitz R, et al. Corrosion Science, 2021, 179, 109137. 22 Le V D, Pessard E, Morel F, et al. International Journal of Fatigue, 2020, 140, 105811. 23 Dhanish S, Yoganandan G, Balaraju J N. Surface and Coatings Technology, 2020, 402, 126316. 24 Sankaran K K, Perez R, Jata K V. Materials Science & Engineering A, 2001, 297(1), 223.