Effect of Crystal Orientation and Temperature on Fracture Behaviour of Single Crystal TiAl-Nb Alloys with Void
KOU Peipei1,2, FENG Ruicheng1,2, LI Haiyan1,2, LI Longlong3
1 School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China 2 Key Laboratory of Digital Manufacturing Technology and Application, The Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China 3 Jinchuan Group Co., Ltd. Third Mining Area, Jinchuan 737100, China
Abstract: The effects of crystal orientation and temperature on the fracture behaviour of single crystal TiAl-Nb alloys with void were studied by molecular dynamics method. The mechanical properties and internal micro-defect evolution of TiAl-Nb alloys under different conditions were analyzed. The results show that, the crystal orientation has a significant effect on the mechanical properties of TiAll-Nb alloys with voids, but has little effect on the fracture behaviour of it, which is maybe due to the reason that the solid solution strengthening effect is greater than that of dislocation because of the addition of Nb element. The higher the temperature lead to the smaller yield stress, yield strain and Young's modulus of TiAl-Nb alloys, the time is earlier when the dislocations first nucleate at the void, the fewer number and type of dislocations, as well as the time of the material failure is earlier.
寇佩佩, 冯瑞成, 李海燕, 李龙龙. 晶向和温度对含孔洞单晶TiAl-Nb合金断裂行为的影响[J]. 材料导报, 2021, 35(10): 10114-10119.
KOU Peipei, FENG Ruicheng, LI Haiyan, LI Longlong. Effect of Crystal Orientation and Temperature on Fracture Behaviour of Single Crystal TiAl-Nb Alloys with Void. Materials Reports, 2021, 35(10): 10114-10119.
1 Feng R C, Wang M M, Li H Y, et al. Materials, 2019, 12(1), 184. 2 Zhang M Y, Zhong M, Yuan S, et al. In: Materials Science Forum of 2018. Switzerland,2018,pp. 627. 3 Jun Y U, Mao D K, Ya H L, et al. Foundry Technology, 2018, 39(11), 196. 4 Su Y, Xu S. Materials Science & Engineering A, 2016, 678, 153. 5 Zhang Y, Jiang S. Philosophical Magazine, 2017, 97(30), 2772. 6 Wang J P, Yue Z F, Wen Z X, et al. Computational Materials Science, 2017, 132, 116. 7 Pushkareva M, Sket F, Segurado J, et al. Materials Science and Engineering A, 2019, 760, 258. 8 Adrien J, Pushkareva M, Maire E, et al. Materials Science and Enginee-ring, A, 2016, 1. 9 Peng X, Zhu W, Chen K, et al. Journal of Applied Physics, 2016, 119(16), 1. 10 Pan K L, Wang Y G.Journal of Tongji University, 1998, 26(2), 1(in Chinese). 潘客麟, 王远功. 同济大学学报, 1998, 26(2), 1. 11 Huang K X, Yao J P, Hu Q Y, et al. Journal of Material Heat Treatment, 2018, 39(12), 121(in Chinese). 黄凯鑫, 尧军平, 胡启耀, 等. 材料热处理学报, 2018, 39(12), 121. 12 Jian L S, Pei W, Feng G Z, et al. Journal of Physics, Condensed Matter, 2018, 30(25),1. 13 Feng R, Cao H, Li H, et al. High Temperature Materials & Processes, 2018, 37(2), 113. 14 Feng R C, Qi Y N, Zhu Z X, et, al.International Journal of Precision Engineering and Manufacturing, Doi: 10.1007/s12541-019-00249-z. 15 Hirel P.Computer Physics Communications, 2015, 197, 212. 16 Zope R R, Mishin Y.Physical Review B, 2003, 68(2), 366. 17 Feng R C, Qiao H Y, Zhu Z X, et al.Rare Metal Materials and Enginee-ring, 2019(5), 1559(in Chinese). 冯瑞成, 乔海洋, 朱宗孝, 等. 稀有金属材料与工程, 2019(5), 1559. 18 Wang Q L, Zhang C F, Wu M P, et al.China Mechanical Engineering, 2019, 30(16), 1959(in Chinese). 王全龙, 张超锋, 武美萍, 等. 中国机械工程, 2019, 30(16), 1959. 19 Tang F L, Cai H M, Bao H W, et al. Computational Materials Science, 2014, 84, 232. 20 Irvine D, Marzari N.Springer Berlin, 2005, 24, 497. 21 Smallman R E, Ngan A H W.Modern Physical Metallurgy, 2014, 13(2), 121. 22 Irvine D, Marzari N. Springer Berlin, 2005, 24, 497. 23 Rawat S, Warrier M, Chaturvedi S, et al.Modelling and Simulation in Materials Science and Engineering, 2011, 19(2), 1. 24 Xu Z D, Fan Z L.Journal of Southwest Jiaotong University, 1993, 28(2), 87(in Chinese). 徐志东, 范子亮. 西南交通大学学报, 1993, 28(2), 87. 25 Liu T, Liu M S.Mechanical Engineering Materials, 2014, 38(3), 85(in Chinese). 刘彤, 刘敏珊. 机械工程材料, 2014, 38(3), 85.