Please wait a minute...
材料导报  2019, Vol. 33 Issue (15): 2610-2616    https://doi.org/10.11896/cldb.18060165
  高分子与聚合物基复合材料 |
渗透汽化分离水中有机物的研究进展
李兴1,2,邓立生1,2,何兆红1,2,黄宏宇1,2
1.中国科学院广州能源研究所,广州 510640
2.广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640
Research Progress in Separation Organics from Aqueous Solution by Pervaporation
LI Xing1,2, DENG Lisheng1,2, HE Zhaohong1,2, HUANG Hongyu1,2
1.Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640
2.Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640
下载:  全 文 ( PDF ) ( 1559KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 渗透汽化是一种分离液体混合物的新兴的选择性膜分离技术,其具有高效、经济、安全、清洁等优点,特别适用于蒸馏法难以分离的近沸点和恒沸点的液体混合物,该技术目前主要应用于有机溶剂中微量水的脱除以及水溶液中少量有机化合物的分离。然而,渗透汽化脱除有机溶剂中微量水的研究是目前开展最多、最成熟,在工业中最先使用的技术;而关于渗透汽化分离水溶液中少量有机化合物的研究还比较少,还不够成熟,在工业中的应用还处于初步阶段,是未来重要的发展方向。
与渗透汽化分离有机溶剂中的水相比,渗透汽化分离水中的有机物所需处理的对象更加复杂,对渗透汽化膜的选择性、适应性等方面的要求更高。目前针对渗透汽化分离水中有机物的研究大多是通过制备不同的渗透汽化膜来分离水中不同的有机化合物,并通过改变渗透汽化工艺条件、膜的制备条件等参数来研究渗透汽化过程中各个因素对渗透汽化性能的影响,从而提高渗透汽化分离水中有机物的效果。影响渗透汽化分离水中有机物的因素有很多,主要包括工艺条件和膜条件两方面。在工艺条件方面,各研究主要考察料液中有机物的浓度、料液温度和渗透压力对渗透汽化性能的影响,因为这几个因素在渗透汽化工艺中容易控制和调节,并且它们对渗透汽化工艺的影响效果明显。研究发现,对于分离水中的单一有机物时,随着料液中有机物浓度的增加,有机物的渗透通量会增加,但有机物的分离因子可能增大,也可能减小;随着料液温度的升高,有机物的渗透通量会增加,但有机物的分离因子可能增大,也可能减小;随着渗透压力的增加,渗透汽化性能会提高。在膜条件方面,各研究主要是制备一些新型的优先透有机物膜,或是对现有的优先透有机物膜进行改性,从而来分离水中不同的有机物。通过改善膜的制备条件、结构、性质等方面,来提高膜对有机物的亲和性和选择性,从而提高渗透汽化性能。
本文介绍了渗透汽化分离水中有机物的特点、原理以及相关研究进展,综述了不同的渗透汽化膜及工艺条件对分离水中有机物渗透汽化性能的影响,总结了关于渗透汽化分离水中有机物的研究中的实验结果,并对渗透汽化分离水中有机物技术的应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李兴
邓立生
何兆红
黄宏宇
关键词:  渗透汽化  水溶液  有机化合物    工艺条件    
Abstract: Pervaporation is a novel selective membrane separation technology used for liquid mixture separation. It has the advantages of high efficiency, economy, safety and cleanliness, and it is suitable for the separation of a similar boiling point mixture which is difficult to be separated by distillation. This technology is mainly applied to the removal of trace water from organic solvents and the separation of small amounts of organic compounds from aqueous solutions at present. However, the researches on the removal of trace water from organic solvents by pervaporation is the most developed, most mature and the first to be used in industry, but the studies on the separation of small amounts of organic compounds from aqueous solutions by pervaporation are few, not mature enough, and the application in industry is still in the preliminary stage, which is an important development direction in the future.
Compared to the separation of water from organic solvents by pervaporation, the separation of organic compounds from aqueous solutions by pervaporation needs to be treated more complex, the requirements on the selectivity and adaptability of pervaporation membranes are higher. So the study of the separation of organic compounds from aqueous solutions by pervaporation including the preparation of different pervaporation membrane to separate different organic compounds in water, and changing the technological conditions of pervaporation process and the membrane preparation conditions. Thus, the effects of various factors on the properties of pervaporation in the process of pervaporation were studied, thus the separation of organic compounds from water by pervaporation are optimized.
There are many factors influencing the separation of organic compounds from water by pervaporation, including two aspects: technological conditions and membrane conditions. In terms of technological conditions, the effects of concentration of organic compound, temperature and per-meation pressure on pervaporation performance were investigated, because this factors were easy to control and adjust in pervaporation process, and the effect was obvious. The study found that when a single organic compound was separated from water, with the increased of the concentration of organic compound, the permeation flux of organic compound would increase, but the separation factor of organic compound might increase or decrease. With the increased of temperature, the permeation flux of organic compound would increase, but the separation factor of organic compound might increase or decrease. With the increased of permeation pressure, the performance of the pervaporation would be improved. In terms of membrane conditions, the main researches were to prepare some new priority permeable organic membranes, or modify the existing priority permeable organic membranes, thus to separate the different organic compounds from the water. The affinity and selectivity of the membrane to organic compound were improved, by optimizing the preparation conditions, structure and properties of the membrane, and the pervaporation performances were improved.
In this paper, the characteristics, the principle and the related research progress in separation organics from aqueous solution by pervaporation were introduced, and the effects of different pervaporation membranes and technological conditions on the pervaporation properties of separation organics from aqueous solution were reviewed, and some experimental results on the separation of organic compounds from water by pervaporation were summarized, and the application prospect of separation organics from aqueous solution by pervaporation was prospected.
Key words:  pervaporation    aqueous solution    organic compounds    membranes    technological conditions
               出版日期:  2019-08-10      发布日期:  2019-07-02
ZTFLH:  TQ 028.8  
基金资助: 中国科学院前沿科学重点研究项目(QYZDY-SSW-JSC038);广东省新能源和可再生能源研究开发与应用重点实验室基金项目(Y809JK1001);广东省科技计划项目(2014B050502011)
作者简介:  李兴,2014年6月毕业于广东工业大学,获得工程硕士学位。现于中国科学院广州能源研究所工作,在黄宏宇研究员的团队里进行研究。目前,本人主要的研究领域包括渗透汽化分离技术、干式脱硫技术和纳米材料强化传热方面,以第一作者发表论文6篇,其中SCI/EI为4篇。
黄宏宇,中国科学院广州能源研究所研究员、科技处处长,中国科学院大学博士研究生导师。2007年4月在日本名古屋大学工学研究科能源科学与工程专业取得博士学位,2007—2008年分别在日本名古屋产业科学研究所和日本爱知工业大学综合技术研究所进行博士后研究工作;2008年4月—2011年3月,任日本名古屋大学环境与友好型社会科学研究所研究员,兼日本爱知工业大学综合技术研究所客座研究员;2011年1月回国后,入选中国科学院“百人计划”,先后主持国家自然科学基金、中国科学院重点项目、广东省重大专项、广州市科技计划项目等,并多次担任国际合作项目的中方负责人,具有良好的国际影响力。主要从事中低品位能源提质高效利用方面的研究,在吸附式热泵、化学蓄能等理论研究及技术开发方面获得了许多研究成果,为太阳能、工业余热等能量高效利用方面提供了方向。近年来,发表论文30余篇,其中EI/SCI 20余篇,授权发明专利8项。
引用本文:    
李兴,邓立生,何兆红,黄宏宇. 渗透汽化分离水中有机物的研究进展[J]. 材料导报, 2019, 33(15): 2610-2616.
LI Xing, DENG Lisheng, HE Zhaohong, HUANG Hongyu. Research Progress in Separation Organics from Aqueous Solution by Pervaporation. Materials Reports, 2019, 33(15): 2610-2616.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060165  或          http://www.mater-rep.com/CN/Y2019/V33/I15/2610
[1] Wang Q W, Lu J F, Ren Y J, et al. Chemical Reagents,2016,38(6),518(in Chinese).
王庆伟,鲁加峰,任玉杰,等.化学试剂,2016,38(6),518.
[2] Li J D, Yang Z, Jin X Y, et al. Engineering Sciences,2014,16(12),46(in Chinese).
李继定,杨正,金夏阳,等.中国工程科学,2014,16(12),46.
[3] Wu X M, Zhang Q G, Soyekwo F, et al. Aiche Journal,2016,62(3),842.
[4] Jin W Q, Liu G P, Xu N P. Membrane Science and Technology,2011,31(3),25(in Chinese).
金万勤,刘公平,徐南平.膜科学与技术,2011,31(3),25.
[5] Ohshima T, Kogami Y, Miyata T, et al. Journal of Membrane Science,2005,260(1-2),156.
[6] You T, Chen L X, Zhang Q W, et al. Chemical Industry and Engineering Progress,2009,28(9),1653(in Chinese).
由涛,陈龙祥,张庆文,等.化工进展,2009,28(9),1653.
[7] Suo J S, Peng X Z, Xian J, et al. Petrochemical Technology,2013,42(4),5(in Chinese).
索继栓,彭小芝,鲜建,等.石油化工,2013,42(4),5.
[8] Wang J, Li M S, Zhou S Y, et al. New Chemical Materials,2018,46(2),8(in Chinese).
王杰,李梅生,周守勇,等.化工新型材料,2018,46(2),8.
[9] Meng F P, Fan Z K, Wu Q Y, et al. Materials Review A: Review Papers,2017,31(10),168(in Chinese).
孟凡朋,樊震坤,吴奇阳,等.材料导报:综述篇,2017,31(10),168.
[10] Cheng X, Pan F, Wang M, et al. Journal of Membrane Science,2017,541,329.
[11] Li J, Wang N X, Ji S L. Chemical Industry and Engineering Progress,2014,33(11),2982(in Chinese).
李杰,王乃鑫,纪树兰.化工进展,2014,33(11),2982.
[12] Zhang X Y, Deng X H, Sun Y. Materials Review,2007,21(10),51(in Chinese).
张晓颖,邓新华,孙元.材料导报,2007,21(10),51.
[13] Jin F Q, Wang J M, Wang B, et al. Applied Chemical Industry,2010,39(12),1924(in Chinese).
金付强,王建梅,王波,等.应用化工,2010,39(12),1924.
[14] Vane L M. Journal of Chemical Technology & Biotechnology,2005,80(6),603.
[15] Zhao J, Jin W. Chinese Journal of Chemical Engineering,2017,25(11),1616.
[16] Ong Y K, Shi G M, Le N L, et al. Progress in Polymer Science,2016,57,1.
[17] Lin Y B, Zhao Z Y. Mechanical and Electrical Information,2017(11),18(in Chinese).
林延彬,赵志远.机电信息,2017(11),18.
[18] Jiang L Y, Wang Y, Chung T S, et al. Progress in Polymer Science,2009,34(11),1135.
[19] Aliabadi M, Aroujalian A, Raisi A. Desalination,2012,284(1),116.
[20] Li C C, Liu C L, Hao X G. Journal of Taiyuan University of Technology,2018,49(2),179(in Chinese).
李春成,刘长林,郝晓刚.太原理工大学学报,2018,49(2),179.
[21] Tang Q Y, Wang L, Zhan X, et al. Membrane Science and Technology,2011,31(6),1(in Chinese).
唐俏瑜,王莉,展侠,等.膜科学与技术,2011,31(6),1.
[22] Hosseini M, Ameri E. Vacuum,2017,141,288.
[23] Li D, Yao J, Sun H, et al. Applied Surface Science,2018,427,288.
[24] Sun D, Li B B, Xu Z L. Journal of Chemical Engineering of Chinese Universities,2013,27(3),500(in Chinese).
孙德,李冰冰,许振良.高校化学工程学报,2013,27(3),500.
[25] Yi S, Wan Y. Chemical Engineering Journal,2017,313,1639.
[26] Ying L, Tan S, Hui W, et al. Chemical Engineering Journal,2008,137(3),496.
[27] Zhou H, Shi R, Jin W. Separation & Purification Technology,2014,127(1),61.
[28] Hao X, Pritzker M, Feng X. Journal of Membrane Science,2009,335(1-2),96.
[29] Zhang S Y, Zou Yun, Wei T Y, et al. CIESC Journal,2016,67(11),4662(in Chinese).
张时雨,邹昀,韦藤幼,等.化工学报,2016,67(11),4662.
[30] Yahaya G O. Journal of Membrane Science,2008,319(1),82.
[31] Kujawska A, Knozowska K, Kujawa J, et al. Separation & Purification Technology,2016,159,68.
[32] Wang M M, Zhang X R, Li X R, et al. Membrane Science and Technology,2015,35(6),40(in Chinese).
王敏敏,张新儒,李馨然,等.膜科学与技术,2015,35(6),40.
[33] Tang J, Chen D Q, Zhang C F, et al. Chemical Industry and Engineering Progress,2015,34(10),3700(in Chinese).
唐郡,陈德强,张春芳,等.化工进展,2015,34(10),3700.
[34] Li D, Yao J, Sun H, et al. Chemical Engineering Research & Design,2018,132,424.
[35] Zhang C F, Dong L L, Bai Y X, et al. Membrane Science and Technology,2013,33(4),88(in Chinese).
张春芳,董亮亮,白云翔,等.膜科学与技术,2013,33(4),88.
[36] Bai Y X, Yang L, Gu J, et al. Chemical Industry and Engineering Progress,2011,30(9),1919(in Chinese).
白云翔,杨乐,顾瑾,等.化工进展,2011,30(9),1919.
[37] Chai L, Li H, Zheng X, et al. Journal of Membrane Science,2015,491,168.
[38] Shan L, Shao J, Wang Z, et al. Journal of Membrane Science,2011,378(1),319.
[39] Araki S, Imasaka S. Journal of Membrane Science,2011,380(1),41.
[40] Kujawa J, Cerneaux S, Kujawski W. Chemical Engineering Journal,2015,260,43.
[41] Araki S, Gondo D, Imasaka S, et al. Journal of Membrane Science,2016,514,458.
[42] Liu Y, Shi B. Separation & Purification Technology,2009,65(3),233.
[43] Kujawa J, Cerneaux S, Kujawski W. Journal of Membrane Science,2015,474,11.
[44] Dong Z, Liu G, Liu S, et al. Journal of Membrane Science,2014,450(2),38.
[45] Liu K, Fu X N. Journal of Chemical Engineering of Chinese Universities,2016,30(4),806(in Chinese).
刘琨,付夏娜.高校化学工程学报,2016,30(4),806.
[46] Wei C G, Qi L, Zhou Y C, et al. Modern Chemical Industry,2017,37(12),88(in Chinese).
韦超广,戚律,周元冲,等.现代化工,2017,37(12),88.
[47] Ahn H, Lee Y. Journal of Membrane Science,2006,279(1),459.
[48] Rom A, Friedl A. Separation & Purification Technology,2016,170,40.
[1] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[2] 原禧敏, 杨宏伟, 李郁秀, 巢云秀, 李耀, 陈家林, 陈力. 无卤素离子辅助合成纳米银线及其在柔性透明导电薄膜中的应用[J]. 材料导报, 2019, 33(z1): 300-302.
[3] 关文学, 周键, 王三反, 李艳红. 等离子体技术接枝苯磺酸甜菜碱改性对离子交换膜电阻的影响[J]. 材料导报, 2019, 33(z1): 462-465.
[4] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[5] 卢勇, 冯辉霞, 张晓芳. 金属表面植酸转化膜研究进展[J]. 材料导报, 2019, 33(9): 1455-1461.
[6] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[7] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[8] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[9] 温变英, 段磊. PEI/Ni梯度电磁屏蔽薄膜材料耐腐蚀性研究[J]. 材料导报, 2019, 33(6): 1065-1069.
[10] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[11] 崔龙辰, 王军军, 黄伟九. 类聚合物碳薄膜的制备及其摩擦学研究进展[J]. 材料导报, 2019, 33(5): 797-804.
[12] 阿比迪古丽·萨拉木, 吾尔尼沙·依明尼亚孜, 买买提热夏提·买买提, 吴钊峰. 掺杂对BiFeO3薄膜电、磁特性影响综述[J]. 材料导报, 2019, 33(5): 791-796.
[13] 徐萍, 钱晓明, 郭昌盛, 徐志伟, 赵立环, 买魏, 李静, 田旭, 朵永超. 用于盐湖卤水镁锂分离的纳滤技术研究进展[J]. 材料导报, 2019, 33(3): 410-417.
[14] 周超, 李得天, 周晖, 张凯锋, 曹生珠. MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述[J]. 材料导报, 2019, 33(3): 438-443.
[15] 郑晓猛, 张永振, 杜三明, 刘建, 杨正海, 逄显娟. 减摩耐磨多层膜设计及研究进展[J]. 材料导报, 2019, 33(3): 444-453.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed