Please wait a minute...
材料导报  2019, Vol. 33 Issue (15): 2617-2623    https://doi.org/10.11896/cldb.18070102
  高分子与聚合物基复合材料 |
环境友好型增塑剂增韧聚乳酸的最新研究进展
彭少贤1,2,蔡小琳1,2,胡欢1,2,赵西坡1,2
1.湖北工业大学材料与化学工程学院,绿色轻工材料湖北省重点实验室,武汉 430068
2.湖北工业大学绿色轻质材料与加工协同创新中心,武汉 430068
Latest Research Progress in Polylactic Acid Toughened by Environmental Friendly Plasticizer
PENG Shaoxian1,2, CAI Xiaolin1,2, HU Huan1,2, ZHAO Xipo1,2
1.Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068
2.Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068
下载:  全 文 ( PDF ) ( 2414KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚乳酸(PLA)是一种高模量、高强度的生物可降解热塑性聚酯,具有良好的生物相容性,且不污染环境,是目前最有发展前景的环保材料之一。然而,纯PLA分子链刚性大、性脆、结晶速率慢,这些缺点都极大地限制了PLA在各领域的应用。近年来,PLA的增韧研究越来越引起了研究者们的重视,增塑改性就是增韧PLA的有效方法之一。
增塑能提高PLA分子链的运动能力,减小分子链间的作用力,从而改善PLA的加工流动性和脆性。但增塑剂与PLA相容性不佳,小分子增塑剂易迁移,大分子增塑剂会与PLA发生相分离。为防止PLA制品带来的危害,学者们纷纷开始研究环境友好型增塑剂对PLA的增韧效果。最近,比较热门的环境友好型增塑剂有柠檬酸酯类增塑剂、聚乙二醇(PEG)、乳酸低聚物(OLA)、植物油基增塑剂等。
柠檬酸酯类增塑剂对PLA的增塑效果好,增塑后PLA的断裂伸长率增至400%,但增塑后的PLA材料变软,力学性能达不到应用要求,且柠檬酸酯类增塑剂易从PLA材料中迁出,材料最终性能将变得更差。PEG能有效增韧PLA,但PEG易与PLA发生相分离,随后,学者们将PEG接枝在PLA链上进行增塑,取得了不错的增韧效果。OLA与PLA具有相似的化学结构,且相容性较好,直链OLA增塑PLA后其延展性显著提高,但材料强度明显下降。同时,还可以利用支化OLA增塑PLA,使PLA中的结晶区域与无定形区域达到平衡来提高PLA的韧性。植物油基增塑剂可生物降解、环境友好、易于获得,且源于可再生资源,但与PLA的相容性差,易发生相分离。
本文主要总结了近几年国内外学者在增韧聚乳酸方面的研究,并分别综述了柠檬酸酯类增塑剂、聚乙二醇(PEG)、乳酸低聚物(OLA)、植物油基增塑剂对PLA材料结构和性能的影响,分析了各类增塑剂增塑PLA中还存在的问题,以期为制备高透明、高性能且可生物降解的PLA材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭少贤
蔡小琳
胡欢
赵西坡
关键词:  聚乳酸  增塑改性  乳酸低聚物(OLA)  生物基增塑剂    
Abstract: Polylactide (PLA) is a kind of biodegradable thermoplastic polyester with high-modulus and high-strength. Thanks to its favorable biocompatibility and environmental friendliness, PLA is currently one of the most promising environmental protection materials. However, pure PLA suffers from large rigidity of molecular chain, brittleness and slow crystallization rate, which largely block the wide application of PLA in diverse fields. In recent years, more and more efforts have been put into the research on toughening PLA, and plasticizing modification is one of the effective approach to toughen PLA.
Plasticization can improve the mobility of PLA molecular chains and reduce the interaction between molecular chains, thereby optimizing the processing fluidity and brittleness of PLA. The poor compatibility of plasticizers with PLA and the easy migtation of small molecule plasticizers will lead to the separation of macromolecular plasticizers from PLA. For the sake of averting the harmful effects of PLA products, the research of toughening and modifying effect of environmentally friendly plasticizers on PLA have been carried out extensively. At present, citrate plasticizers, polyethylene glycol (PEG), lactic acid oligomers (OLA), vegetable oil based plasticizers constitute the most popular environmentally friendly plasticizers.
The citric acid ester plasticizer exert good plasticizing effect on PLA, and its elongation at break increases to 400%. Unfortunately, the plasticized PLA materials become soft, and the mechanical properties of PLA cannot satisfy the application requirements. Moreover, the citrate plasticizer can be easily removed from the PLA, resulting in the worse final properties of the material. PEG is also an effective alternative to toughen PLA, but PEG is easy to separate from PLA as well. Researchers have grafted PEG onto the PLA chain for plasticization, and satisfactory toug-hening effect has been achieved. OLA and PLA show similar chemical structure with good compatibility. Significantly improved ductility of PLA can be acquired by plasticizing of linear OLA, accompanied by sharply droped strength of the material. Furthermore, the branched OLA can be employed to plasticize the PLA to balance the crystalline regions with the amorphous regions in the PLA for enhancing the toughness of the PLA. Vegetable oil-based plasticizers feature biodegradable, environmentally friendly, readily available, derived from renewable resources, but they show poor compatibility with PLA and are easily separated from PLA.
This paper mainly summarizes the researches on plasticizing polylactic acid at home and abroad in recent years, and reviews the effect of citrate plasticizers, polyethylene glycol (PEG), lactic acid oligomers (OLA), and vegetable oil base on the structure and property of PLA. The problems existing in various plasticizer for plasticizing PLAs are analyzed, which is expected to provide reference for the preparation of highly transparent and high performance biodegradable PLA materials.
Key words:  polylactic acid    plasticization modification    lactic acid oligomer (OLA)    biobased plasticizer
               出版日期:  2019-08-10      发布日期:  2019-07-02
ZTFLH:  TQ314  
基金资助: 国家自然科学基金(51273060);湖北省教育厅科学研究重点项目(D20181404);绿色轻工材料湖北省重点实验室开放基金重点项目(201806A08)
作者简介:  彭少贤,教授,教育部材料类教学指导委员会委员,湖北省新世纪高层次人才工程第二次人选,国家自然科学基金委评审委员,中国塑料协会加工委员会理事、湖北省复合材料学会第五届理事会常务理事、中国塑料协会改性委员会理事。高分子材料成型学科湖北省重点学科带头人,高分子材料与工程湖北省品牌专业负责人,湖北省级化学教学示范中心主任;《湖北工业大学学报》(自然科学版)编辑委员会委员,《湖北造纸》编辑部编委会委员,湖北省包装技术协会首批专家。承担国家级科研项目9项(其中主持国家自然科学基金5项);承担省部级项目10项;横向科研项目30余项;鉴定成果11项;发表科研论文100多篇。
赵西坡,2006年本科毕业于湖北工业大学化工系,获得工学学士学位。2009年获得湖北工业大学硕士学位。2017年在武汉大学材料物理与化学专业取得博士学位。现为湖北工业大学绿色轻工材料湖北省重点实验室副教授,主要从事环境友好高分子材料的高性能化和功能化,主持、参与国家自然科学基金、国家发改委项目、科技部中小企业创新基金、省科技重大攻关项目等12项,发表学术论文50余篇,申请国家发明专利15项。
引用本文:    
彭少贤,蔡小琳,胡欢,赵西坡. 环境友好型增塑剂增韧聚乳酸的最新研究进展[J]. 材料导报, 2019, 33(15): 2617-2623.
PENG Shaoxian, CAI Xiaolin, HU Huan, ZHAO Xipo. Latest Research Progress in Polylactic Acid Toughened by Environmental Friendly Plasticizer. Materials Reports, 2019, 33(15): 2617-2623.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070102  或          http://www.mater-rep.com/CN/Y2019/V33/I15/2617
[1] Wang Y, Qin Y, Zhang Y, et al. International Journal of Biological Macromolecules,2014,67(3),58.
[2] Gu C H, Wang J J, Yu Y, et al. Carbohydrate Polymers,2013,92(2),1579.
[3] Shirai M A, Grossmann M V, Mali S, et al. Carbohydrate Polymers,2013,92(1),19.
[4] Hughes J, Thomas R, Byun Y, et al. Carbohydrate Polymers,2012,88(1),165.
[5] Chieng B W, Ibrahim N A, Then Y Y, et al. Molecules,2014,19(10),16024.
[6] Rasal R M, Janorkar A V, Hirt D E. Progress in Polymer Science,2010,35(3),338.
[7] Khamsarn T, Supthanyakul R, Matsumoto M, et al. Polymer,2016,112,87.
[8] Farah S, Anderson D G, Langer R. Advanced Drug Delivery Reviews,2016,107,367.
[9] Pal A K, Katiyar V. Biomacromolecules,2016,17(8),2603
[10] Silverajah V S, Ibrahim N A, Zainuddin N, et al. Molecules,2012,17(10),11729.
[11] Saiwaew R, Suppakul P, Boonsupthip W, et al. Energy Procedia,2014,56(56),280.
[12] Fortunati E, Peltzer M, Armentano I, et al. Carbohydrate Polymers,2012,90(2),948.
[13] Hassouna F, Raquez JM, Addiego F, et al. European Polymer Journal,2012,48,404.
[14] Avolio R, Castaldo R, Gentile G, et al. European Polymer Journal,2015,66,533.
[15] Li Z, Tan B H, Lin T, et al. Progress in Polymer Science,2016,62,22.
[16] Liu Z, Lei Y, Hu Z, et al. Macromolecular Research,2017,25(5),439.
[17] Rasal R M, Janorkar A V, Hirt D E. Progress in Polymer Science,2010,35(3),338.
[18] Xing C, Matuana L M. Journal of Applied Polymer Science,2016,133(12),43201.
[19] Ferri J M, Garcia-Garcia D, Montanes N, et al. Polymer International,2017,66(6),882.
[20] Park S B, Hwang S Y, Moon C W, et al. Macromolecular Research,2010,18(5),463.
[21] Meng B, Deng J, Liu Q, et al. European Polymer Journal,2012,48(1),127.
[22] Yang Y, Zhang L, Zhu X, et al. Science China Chemistry,2016,59(11),1355.
[23] Harte I, Birkinshaw C, Jones E, et al. Journal of Applied Polymer Science,2014,127(3),1997
[24] Yin Jingbo, Lu Xiaochun, Cao Yanlin, et al. Polymer Materials Science and Engineering,2008,24(1),151 (in Chinese).
尹静波,鲁晓春,曹燕琳,等.高分子材料科学与工程,2008,24(1),151.
[25] Maiza M, Benaniba M T, Quintard G, et al. Annales Franaises Danesthèsie Et De Rèanimation,2015,25(6),581.
[26] Maiza M, Benaniba M T. Journal of Polymer Engineering,2015,36(4),371.
[27] Wan Tong, Yang Guangrui, Zhang Jie, et al. Material Engineering,2015,43(5),67(in Chinese).
万同,杨光瑞,张婕,等.材料工程,2015,43(5),67.
[28] Li F, Zhang S, Liang J, et al. Polymers for Advanced Technologies,2015,26(5),465.
[29] Li F, Tan L, Zhang S, et al. Journal of Applied Polymer Science,2015,133(4),42919.
[30] Wu Dun, Li Huili, Lu Ying, et al. Polymer Materials Science and Engineering,2017,33(5),164(in Chinese).
吴盾,李会丽,陆颖,等.高分子材料科学与工程,2017,33(5),164.
[31] Sungsanit K, Kao N, Bhattacharya S N. Polymer Engineering & Science,2012,52(1),108.
[32] Li F J, Liang J Z, Zhang S D, et al. Journal of Polymers and the Environment,2015,23(3),407.
[33] Bijarimi M, Ahmad S, Rasid R, et al. In:International Advances in Applied Physics and Materials Science Congress & Exhibition (APMAS’15), Oludeniz,2016,pp.020002.
[34] Hassouna F, Raquez J M, Addiego F, et al. European Polymer Journal,2011,47(11),2134.
[35] Choi K M, Choi M C, Han D H, et al. European Polymer Journal,2013,49(8),2356.
[36 ] Wang K, Brüster B, Addiego F, et al. Polymer International,2015,64(11),1544.
[37] Kfoury G, Hassouna F, Raquez J M, et al. Macromolecular Materials & Engineering,2014,299(5),583.
[38] Brüster B, Addiego F, Hassouna F, et al. Polymer Degradation & Stability,2016,131,132.
[39] Burgos N, Tolaguera D, Fiori S, et al. Journal of Polymers and the Environment,2014,22(2),227.
[40] Burgos N, Martino V P, Jiménez A. Polymer Degradation & Stability,2013,98(2),651.
[41] Phuphuak Y, Miao Y, Zinck P, et al. Polymer,2013,54(26),7058.
42 Wang L, Jing X, Cheng H, et al. Industrial & Engineering Chemistry Research,2012,51(30),10088.
[43] Zhang Shuyang, Chen Zhefeng, Wu Feng, et al. Acta Polymerica Sinica,2016,5,679(in Chinese).
张书洋,陈哲峰,吴枫,等.高分子学报,2016,5,679.
[44] Phuphuak Y, Chirachanchai S. Polymer,2013,54(2),572.
[45] Tsujimoto T, Haza Y, Yin Y, et al. Polymer Journal,2011,43(4),425.
[46] Vijayarajan S, Selke S E M, Matuana L M. Macromolecular Materials & Engineering,2014,299(5),622.
[47] Saad G R, Elsawy M A, Aziz M S A. Journal of Thermal Analysis & Calorimetry,2017,128(1),211.
[48] Elsawy M, Christiansen J D, Sanporean C G. Journal of Optoelectronics & Advanced Materials,2014,8,109.
[49] Javidi Z, Hosseini S F, Rezaei M. LWT-Food Science and Technology,2016,72,251.
[50] Llana-Ruiz-Cabello M, Pichardo S, Bermodez J M, et al. Food Additives & Contaminants,2016,33(8),1374.
[51] Zhao Y Q, Chen F Q, Feng Y H, et al. CIESC Journal,2014,65(10),4197(in Chinese).
赵永青,陈福泉,冯彦洪,等.化工学报,2014,65(10),4197.
[52] Quiles-Carrillo L, Duart S, Montanes N, et al. Materials & Design,2017,140,54.
[53] Mauck S C, Wang S, Ding W, et al. Macromolecules,2016,49(5),1605.
54 Al-Mulla E A J, Wan M Z W Y, Ibrahim N A B, et al. Journal of Materials Science,2010,45(7),1942.
[55] Carbonell-Verdu A, Samper M D, Garcia-Garcia D, et al. Industrial Crops & Products,2017,104,278.
[56] Ruellan A, Guinault A, Sollogoub C, et al. Express Polymer Letters,2015,9(12),1087.
[57] Hassouma F, Mihai I, Fetzer L, et al. Macromolecular Materials & Engineering,2016,301(10),1267.
[58] Greco A, Maffezzoli A. Polymer Degradation & Stability,2016,132,213.
[59] Ruellan A, Ducruet V, Gratia A, et al. Polymer International,2016,65(6),683.
[60] Botta L, Mistretta M C, Palermo S, et al. Journal of Polymers & the Environment,2015,23(4),1.
[61] Scaffaro R, Dintcheva N T, Marino R, et al. Journal of Polymers & the Environment,2012,20(2),267.
[62] Yang X, Xu H, Odelius K, et al. Materials,2016,9(5),313.
[63] Hao Y, Yang H, Zhang H, et al. Fibers & Polymers,2015,16(12),2519.
[64] Ge H, Yang F, Hao Y, et al. Journal of Applied Polymer Science,2013,127(4),2832.
[65] Petchwattana N, Sanetuntikul J, Narupai B. Journal of Polymers & the Environment,2017,10,1.
[66] Wang Z, Chen P, Chen Z, et al. Asian Journal of Chemistry,2014,26(6),1745.
[67] Wei T, Pang S, Xu N, et al. Journal of Applied Polymer Science,2015,132(3),41308.
[68] Park K, Jin U H, Xanthos M. Polymer Engineering & Science,2010,50(6),1105.
[1] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[2] 常悦, 陈支泽, 杨一奇. 聚乳酸-聚己内酯多嵌段立构复合物薄膜的制备及熔融稳定性[J]. 材料导报, 2019, 33(16): 2808-2812.
[3] 王鑫, 石敏, 余晓磊, 彭少贤, 赵西坡. 聚己二酸对苯二甲酸丁二酯(PBAT)共混改性聚乳酸(PLA)高性能全生物降解复合材料研究进展[J]. 材料导报, 2019, 33(11): 1897-1909.
[4] 赵西坡, 刘畅, 徐敏, 彭少贤. 无机成核剂改善聚乳酸结晶性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1158-1164.
[5] 桑练勇, 胡志德, 晏华, 代军, 张寒松. 可降解材料聚碳酸亚丙酯和聚乳酸的溶度参数与相容性[J]. 材料导报, 2018, 32(22): 3948-3953.
[6] 李文豪, 吴义强, 李萍, 李新功, 左迎峰. 竹纤维/聚乳酸可降解复合材料相容界面构建进展[J]. 材料导报, 2018, 32(17): 3076-3082.
[7] 左迎峰, 吴义强, 顾继友, 佘佳荣, 郭鑫, 江萍. MAH改性方法对淀粉/聚乳酸界面相容性的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 41-45.
[8] 诸婷婷, 谢明明, 龚狄荣. 含半不稳定边臂配体的钛配合物催化丙交酯聚合*[J]. 《材料导报》期刊社, 2017, 31(14): 40-45.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed