Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 159-162    https://doi.org/10.11896/j.issn.1005-023X.2017.022.031
  计算模拟 |
基于第一性原理的α-Fe(001)/Mo2FeB2(001)界面性能的研究*
杨俊茹,王铭兰,刘树,孙绍帅,陈学成
山东科技大学机械电子工程学院,青岛 266590
A First-principles Study on Interface Performance of α-Fe(001)/Mo2FeB2 (001)
YANG Junru, WANG Minglan, LIU Shu, SUN Shaoshuai, CHEN Xuecheng
College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590
下载:  全 文 ( PDF ) ( 504KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用第一性原理方法,研究了α-Fe(001)/Mo2FeB2(001)界面性能。建立了4种不同的原子堆垛方式界面模型,计算了其界面粘附功、界面结合能和断裂功。结果表明,以空心位置堆垛的Fe终端界面性能最稳定,而顶部位置的Fe+B终端界面性能最不稳定,两者的裂纹断裂均趋向于发生在基体相或硬质相内。在此基础上,进一步分析了空心位置Fe终端界面模型和顶部位置Fe+B终端界面模型的电子结构,电荷差分密度图显示在空心位置的Fe终端界面系统中,界面处Fe原子与Fe原子间形成金属键,界面处Fe原子与Mo原子间形成金属键。在顶部位置的Fe+B终端界面系统中,界面处的Fe原子与B原子间形成共价键,但界面强度比空心位置的Fe终端界面系统低。分态密度显示界面处原子间重新排列,发生杂化,形成共价键,揭示了界面成键特性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨俊茹
王铭兰
刘树
孙绍帅
陈学成
关键词:  α-Fe(001)/Mo2FeB2(001)界面  第一性原理  粘附功  界面结合能  电子结构    
Abstract: The interface performance of α-Fe(001)/Mo2FeB2 (001) was studied based on the first-principles. Four different interface models of atom stacking were established, and the interface adhesive work, the binding energy and rupture work were calculated. The results show that the interface performance of Fe-terminated was most stable which was stacked by hollow position, the interface performance of Fe+B-terminated on the top was the worst stable. Both of the crack fractures were trended to occur at the substrate phase or the hard phase. Based on this, the electron structure was further analyzed, the charge density difference graph showed that in the interface system of Fe-terminated at the hollow position, the metallic bond was formed between the Fe atom at interface and among the Fe atoms, also the metallic bond was formed between Fe atom and Mo atom. On top of the interface system of Fe+B-terminated, the covalent bond was formed between Fe atom and B atom, the interface strength was lower than the one in the Fe-terminated interface system at hollow position. The partial density of state indicated the atoms at interfaces were rearranged, hybridization occurred, and the covalent bond was formed, which revealed the forming characteristic of the interface bond.
Key words:  α-Fe(001)/Mo2FeB2 (001) interface    first-principles    adhesive work    interface bonding energy    electron structure
                    发布日期:  2018-05-08
ZTFLH:  TB333  
基金资助: *山东省自然科学基金(ZR2013EEM016;ZR2016EEM37)
作者简介:  杨俊茹:女,1969年生,博士,教授,主要研究方向为覆层材料零件设计E-mail:jryangzhang@163.com
引用本文:    
杨俊茹,王铭兰,刘树,孙绍帅,陈学成. 基于第一性原理的α-Fe(001)/Mo2FeB2(001)界面性能的研究*[J]. 材料导报编辑部, 2017, 31(22): 159-162.
YANG Junru, WANG Minglan, LIU Shu, SUN Shaoshuai, CHEN Xuecheng. A First-principles Study on Interface Performance of α-Fe(001)/Mo2FeB2 (001). Materials Reports, 2017, 31(22): 159-162.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.031  或          http://www.mater-rep.com/CN/Y2017/V31/I22/159
1 Guan W M, Pan Y, Zhang K H, et al. First principle study on the interface of Ag-Ni composites[J].Rare Metal Mater Eng, 2010,39(8):1939.
2 Xiang F H. First-principles study of the interfacial properties of graphene reinforced magnesium matrix composites[D].Taiyuan: North University of China, 2016(in Chinese).
向丰华.石墨烯增强镁基复合材料界面性能第一性原理研究[D].太原:中北大学,2016.
3 Ruan Haiguang, Huang Fuxiang, Zhong Mingjun, et al. The first-principle study of Al-Zr intermetallic compounds[J]. J Chongqing University of Technology(Natural Science), 2017,31(5):60.
阮海光,黄福祥,钟明君,等.Al-Zr系金属间化合物的第一性原理研究[J]. 重庆理工大学学报(自然科学版),2017,31(5):60.
4 Zhang Y, Han X P, Gao X,et al. First-principles calculation on metal-ceramic interfaces[J].Rare Metal Mater Eng, 2005,34(1):640(in Chinese).
张跃,韩小平,高雪,等.金属/陶瓷界面的第一原理研究[J].稀有金属材料与工程,2005,34(1):640.
5 Zhang H Z. First-principles study of the surface and interface of carbide and nitride ceramics[D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2007(in Chinese).
张怀征.碳化物陶瓷表面和金属-氮化物界面的第一原理研究[D].沈阳:中国科学院金属研究所,2007.
6 Arya A, Carter E A. Structure, bonding, and adhesion at the TiC(100)/Fe(110) interface from first principles[J]. J Chem Phys,2003,118(19):8982.
7 Wen Z Q, Hou H, Zhao Y H, et al. First-principle study of interfacial properties of Ni-Ni3Si composite[J]. Comput Mater Sci, 2013,79:424.
8 Li J, Yang Y Q, Feng G H, et al. First-principles study of stability and properties on β-SiC/TiC(111) interface[J]. J Appl Phys, 2013,114(16):163522.
9 Xian Y J, Qiu R Z, Wang X, et al. Interfacial properties and electron structure of Al/B4C interface: A first-principles study[J]. J Nuclear Mater,2016,478:227.
10 Liu B, Wu L J, Zhao Y Q, et al. The interfacial properties of SrRuO3/MoS2 hetero junction: A first-principles study[J]. Eur Phys J B,2016,89:80.
11 Li J, Yang Y, Luo X. First-principles study of the Al(001)/Al3Ti(001) interfacial properties[J]. Comput Mater Sci, 2012,62:136.
12 Wang B, Liu Y, Ye J W, et al. Electronic magnetic and elastic properties of Mo2FeB2: First-principles calculations[J]. Comput Mater Sci, 2013,70:133.
13 Shen Y F. Interfacial binding at TiC based ceramic from first principles investigations[D]. Nanning: Guangxi University, 2012(in Chinese).
申玉芳.TiC基金属陶瓷界面结合的第一性原理研究[D].南宁:广西大学,2012.
14 Fiorentini V, Methfessel M. Extracting convergent surface energies from slab calculations[J]. J Phys: Condensed Matter, 1996,8(36):6525.
15 Wang C, Wang C Y. Ni/Ni3Al interface: A density functional theory study[J]. Appl Surf Sci, 2009,255(6):3669.
16 Siegel D J, Hector L G, Adams J B. Adhesion, atomic structure, and bonding at the Al (111)/α-Al2O3(0001) interface: A first-principles investigation[J]. Phys Rev B, 2002,65(8):085415.
17 Mittendorfer F, Eichler A, Hafner J. Structural, electronic and magnetic properties of nickel surfaces[J]. Surf Sci, 1999,423(1): 1.
[1] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[2] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[3] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[4] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[5] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[6] 王枭, 于晓华, 李晓宇, 刘成, 钟毅, 詹肇麟, 邓久帅. 纯Fe表面机械研磨处理对Ti原子扩散特性影响的第一性原理计算及实验验证[J]. 材料导报, 2019, 33(6): 1017-1021.
[7] 莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
[8] 宋政骢, 米国发, 王有超, 刘晨, 历长云. W-Re二元合金弹性和热力学性质的第一性原理计算[J]. 材料导报, 2019, 33(16): 2785-2792.
[9] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[10] 徐志超, 冯中学, 史庆南, 杨应湘. Mg-Zn-Y合金中14H-LPSO相与W相的电子结构与弹性性能的第一性原理计算[J]. 材料导报, 2018, 32(6): 1026-1031.
[11] 刘伟东, 张旭, 屈华. FeB和Fe2B价电子结构与钢表面渗硼层硬化本质[J]. 《材料导报》期刊社, 2018, 32(4): 672-675.
[12] 宋庆功, 许科, 顾威风, 甄丹丹, 郭艳蕊, 胡雪兰. Zr和Mo双掺杂γ-TiAl基合金的稳定性与延性预测[J]. 材料导报, 2018, 32(18): 3154-3160.
[13] 李飞, 廖怡君, 王旭, 朱庆丰, 崔建忠. Zr元素对纯铝细化机理的电子理论研究[J]. 材料导报, 2018, 32(18): 3190-3194.
[14] 胡洁琼, 谢明, 陈永泰, 陈松, 张吉明, 王塞北. Pt-M(M=Fe, Co, Ni)金属间化合物电子结构和弹性性质的[J]. 《材料导报》期刊社, 2018, 32(14): 2467-2474.
[15] 周惦武,何蓉,刘金水,彭平. Ge、Si元素对ZrO2和Zr(Fe,Cr)2能量与电子结构的影响*[J]. 材料导报编辑部, 2017, 31(22): 146-152.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed