Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 52-57    https://doi.org/10.11896/j.issn.1005-023X.2017.023.006
  专题栏目:超高性能混凝土及其工程应用 |
常温养护型超高性能混凝土的圆环约束收缩性能*
王俊颜1, 边晨1, 肖汝诚2, 马骉3, 刘国平4
1 同济大学先进土木工程材料教育部重点实验室,上海201804;
2 同济大学土木工程学院,上海200092;
3 上海市政工程设计研究总院(集团)有限公司,上海200092;
4 上海罗洋新材料科技有限公司,上海200092
Restrained Shrinkage Behavior of Ultra High Performance Concrete Without Thermal Curing
WANG Junyan1, BIAN Chen1, XIAO Rucheng2, MA Biao3, LIU Guoping4
1 Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Tongji University, Shanghai 201804;
2 College of Civil Engineering, Tongji University, Shanghai 200092;
3 Shanghai Municipal Engineering Design Institute(Group) Co., Ltd., Shanghai 200092;
4 Shanghai Royang Innovative Materials Technologies Co., Ltd., Shanghai 200092
下载:  全 文 ( PDF ) ( 4454KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了HCSA膨胀剂3种掺量(0%、3%、6%)下常温养护型超高性能混凝土(Ultra high performance concrete,UHPC)的圆环约束收缩性能,包括:(1) UHPC轴拉应力应变曲线测试;(2) 根据GB/T50082的UHPC自由收缩实验;(3) 根据ASTM C1581的UHPC圆环约束实验。结果表明,3种UHPC的极限拉伸应变均高于3 000με,28 d总收缩值分别为1 005.6με、600.0με、462.2με,并且在圆环约束作用下转化为残余应变、弹性拉应变和塑性拉应变,其中塑性拉应变分别为700.4με、437.9με、389.9με。3种UHPC在拉伸应变达到1 000με时及圆环约束实验中均未发现0.01 mm以上的可检测裂缝。基于拉伸实验和声发射损伤分析方法对UHPC进行应变分析,可知具有应变强化段的3种UHPC在圆环约束实验中的塑性变形以小于0.01 mm的多点分布微裂纹形式存在。通过添加HCSA膨胀剂对常温养护型UHPC进行收缩补偿,可有效地降低UHPC自身的拉应力以及对原有结构的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王俊颜
边晨
肖汝诚
马骉
刘国平
关键词:  超高性能混凝土  自由收缩  圆环约束试验  轴拉应力应变曲线  塑性变形  HCSA膨胀剂    
Abstract: Restrained shrinkage behavior of ultra high performance concrete (UHPC) incorporating different HCSA expansion agent dosages (0%, 3%, 6%) without thermal curing was investigated by ring test, including three parts: (1) direct tensile stress-strain test of UHPC; (2) free shrinkage test of UHPC according to GB/T 50082; (3) restrained ring-test of UHPC according to ASTM C1581. The results indicated that three types of UHPC all achieved ultimate tensile strain higher than 3 000με. The 28 d free shrinkage values of three types of UHPC were 1 005.6με, 600.0με, 462.2με respectively, which converted into residual strain, elastic tensile strain and plastic tensile strain under ring restraint whose values were 700.4με, 437.9με, 389.9με, respectively. None of the three kinds of UHPC shows a crack wider than 0.01 mm both in the direct tensile test before a tensile strain of 1 000με and in the ring test. The plastic tensile deformation mechanism of UHPC based on the direct tensile test and acoustic emission (AE) analysis method shows that the tensile stress-strain curves of the three kinds of UHPC all have the strain-hardening properties and their plastic deformation presents in the form of multiple cracks smaller than 0.01 mm in the ring test. Adding HCSA expansion agent can effectively reduce the tensile stress of UHPC and influence of UHPC on the structure.
Key words:  ultra high performance concrete    free shrinkage    restrained ring-test    tensile stress-strain curve    plastic deformation    HCSA expansion agent
               出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528  
基金资助: *上海市浦江人才计划基金项目(16PJ1409900); 国家自然科学基金青年项目(51609172); 上海市科委项目(17DZ1204200)
作者简介:  王俊颜:男,1982年生,博士,研究员,博士研究生导师,主要从事超高性能水泥基结构材料(UHPC、ULCC等)的研究 E-mail: wangjunyan@tongji.edu.cn
引用本文:    
王俊颜, 边晨, 肖汝诚, 马骉, 刘国平. 常温养护型超高性能混凝土的圆环约束收缩性能*[J]. CLDB, 2017, 31(23): 52-57.
WANG Junyan, BIAN Chen, XIAO Rucheng, MA Biao, LIU Guoping. Restrained Shrinkage Behavior of Ultra High Performance Concrete Without Thermal Curing. Materials Reports, 2017, 31(23): 52-57.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.006  或          http://www.mater-rep.com/CN/Y2017/V31/I23/52
1 赵筠, 廉慧珍, 金建昌. 钢-混凝土复合的新模式-超高性能混凝土(UHPC/UHPFR)之一:钢-混凝土复合模式的现状、问题及对策与UHPC发展历程[J].混凝土世界, 2013(10):56.
2 Shao X D,Yi D T,Huang Z Y,et al. Basic performance of the composite deck system composed of orthotropic steel deck and ultrathin RPC layer[J]. J Bridge Eng,2011, 18(5):417.
3 GDJTG/T A01-2015, 超高性能轻型组合桥面结构技术规程[S].
4 DB43T1173-2016, 钢-超高韧性混凝土轻型组合结构桥[S].
5 Loukili A, Khelidj A, Richard P. Hydration kinetics change of relative humidity and autogenous shrinkage of ultra-high-strength concrete[J]. Cem Concr Res, 1999, 29(4):577.
6 Vande Voort T L, Suleiman M T, Sritharan S. Design and perfor-mance verification of UHPC piles for deep foundations[R]. America: Iowa State University, 2008.
7 SETRA-AFGC. Ultra high performance fiber-reinforced concretes recommendations[S]. France, 2013.
8 MCS-EPFL. Ultra-high performance fibre reinforced cement-based composites (UHPFRC): Construction material, dimensioning and application[S]. Switzerland: Swiss Federal Institute of Technology, 2016.
9 Russell H G, Graybeal B A. Ultra-high performance concrete: A state-of-the-art report for the bridge community[R]. America: Federal Highway Administration (FHWA), 2013.
10 赵顺增, 刘立, 郑万廪,等. 高性能补偿收缩混凝土用膨胀剂—HCSA的特点及其应用[J]. 膨胀剂与膨胀混凝土, 2009(2):2.
11 Yoo D Y, Park J J, Kim S W, et al. Influence of ring size on the restrained shrinkage behavior of ultra high performance fiber reinforced concrete[J]. Mater Struct, 2013, 47(7):1161.
12 Wang J. The effects of super absorbent polymer on the performance of ultra high performance concrete[D]. Changsha: Hunan University, 2012 (in Chinese).
王嘉. 高吸水性树脂对超高性能混凝土性能的影响[D]. 长沙:湖南大学, 2012.
13 Swenty M K, Graybeal B A. Material characterization of field-cast connection grouts[R]. America: Federal Highway Administration (FHWA), 2013.
14 ASTM. C1581–04 Standard test method for determining age at cracking and induced tensile stress characteristics of mortar and concrete under restrained shrinkage[S]. America, 2004.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[3] 时博, 王金辉, 魏福安. 金属玻璃自由体积理论的研究概述[J]. 材料导报, 2019, 33(7): 1221-1226.
[4] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[5] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[6] 周昱程, 刘娟红, 纪洪广, 付士峰, 谷峪. 温度-复合盐耦合条件下纤维混凝土井壁冲击倾向性试验研究[J]. 材料导报, 2019, 33(16): 2671-2676.
[7] 李志峰,何永全,曹光明,汤军舰,刘振宇. 热轧钢材氧化铁皮的高温形变机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 259-262.
[8] 郭炜, 王德, 付远, 陆德平, 刘克明, 王渠东, 张利. 反复锻压剧烈塑性变形的有限元分析*[J]. CLDB, 2017, 31(8): 145-148.
[9] 张文华, 陈振宇. 超高性能混凝土动态冲击拉伸性能研究*[J]. CLDB, 2017, 31(23): 103-108.
[10] 王倩楠, 顾春平, 孙伟. 水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律*[J]. CLDB, 2017, 31(23): 85-89.
[11] 张倩倩, 刘建忠, 周华新, 光鉴淼, 张丽辉, 林玮, 刘加平. 超高性能混凝土流变特性及其对纤维分散性的影响*[J]. CLDB, 2017, 31(23): 73-77.
[12] 季韬, 林晓溁, 梁咏宁, 陈宝春, 杨政险. 钢纤维对掺花岗岩石粉UHPC的增强增韧:磷酸锌改性和纤维形状的影响及机理*[J]. CLDB, 2017, 31(23): 66-72.
[13] 吴林妹, 史才军, 张祖华, 王浩. 钢纤维对超高性能混凝土干燥收缩的影响*[J]. CLDB, 2017, 31(23): 58-65.
[14] 邵旭东, 邱明红, 晏班夫, 罗军. 超高性能混凝土在国内外桥梁工程中的研究与应用进展*[J]. CLDB, 2017, 31(23): 33-43.
[15] 刘建忠, 韩方玉, 周华新, 张丽辉, 刘加平. 超高性能混凝土拉伸力学行为的研究进展*[J]. CLDB, 2017, 31(23): 24-32.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed