Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 50-55    https://doi.org/10.11896/j.issn.1005-023X.2017.024.011
  第一届先进胶凝材料研究与应用学术会议 |
纳米SiO2与粉煤灰协同改性水泥基材料性能研究
张秀芝1,2,刘明乐1,2,杜笑寒3,杨祥子1,2,周宗辉1,2
1 济南大学材料科学与工程学院,济南 250022;
2 山东省建筑材料制备与测试技术重点实验室,济南 250022;
3 河北工业大学土木与交通学院,天津 300401
Synergistic Effect of Nano Silica and Fly Ash on the Cement-based Materials
ZHANG Xiuzhi1,2, LIU Mingle1,2, DU Xiaohan3, YANG Xiangzi1,2, ZHOU Zonghui1,2
1 School of Materials Science & Engineering, University of Jinan, Jinan 250022;
2 Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, Jinan 250022;
3 School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401
下载:  全 文 ( PDF ) ( 862KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过调整纳米SiO2与粉煤灰的比例,研究了两者协同作用对水泥基材料性能的影响。结果表明,纳米SiO2(NS)和粉煤灰协同作用效果优于NS单一掺加,3%(质量分数,下同)纳米SiO2和不大于30%的粉煤灰同时掺加可以补偿粉煤灰引起的早期强度降低,且砂浆28 d抗压强度不降低。随着NS掺量增加水泥基材料的干燥收缩增大,粉煤灰可以改善纳米SiO2对干燥收缩的不利影响。随着NS掺量的增加,试件的抗冻性和抗氯离子渗透性能均得到提升,掺加3%NS与30%粉煤灰使水泥基材料达到最佳耐久性能。NS可以缩短水泥水化诱导期,加速水泥水化进程,且使胶凝体系总放热量增加。在水泥粉煤灰体系中掺入NS后,非蒸发水含量在早期明显增多,但在后期增长缓慢。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张秀芝
刘明乐
杜笑寒
杨祥子
周宗辉
关键词:  纳米二氧化硅  粉煤灰  协同改性  火山灰活性    
Abstract: The synergistic effect of nano silica and fly ash on cement based materials was studied by adjusting the ratio of nano SiO2 and fly ash. The results showed that the effect of nano silica and fly ash on cement is better than that of adding single nano silica. The early compressive strength reduction by fly ash can be compensated by adding 3% nano silica and less than 30% fly ash into mortar without the decrement of 28 days compressive strength. The drying shrinkage of mortar increased with the increase of nano SiO2, but the fly ash can relieve the drying shrinkage of nano SiO2. With the increase of nano silica, the freeze thaw resistance and chloride corrosion resistance of the specimens were improved, and 3% nanometer silica and 30%fly ash could further enhance the durability of cement-based materials. Nano SiO2 can shorten the induction period of cement hydration and accelerated the process of cement hydration, and the total heat release was increased when nano SiO2 was added. When adding nano SiO2 into the cement-fly ash system, the content of non evaporated water was increased obviously in the early stage, but the increment of the non evaporated water in the late stage was slow. The synergistic effect of nanosilica and fly ash improves the performance of cement mortar, which is beneficial to the performance complementarity.
Key words:  nano silica    fly ash    synergistic effect    pozzolanic activity
               出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TU528  
基金资助: 国家863项目(2015AA034701);国家自然科学基金(51778269);高性能土木工程材料国家重点实验室(2013CEM003)
作者简介:  张秀芝:女,1974年生,博士,副教授,主要研究方向为高性能水泥基复合材料 E-mail:zhangxz74@126.com
引用本文:    
张秀芝,刘明乐,杜笑寒,杨祥子,周宗辉. 纳米SiO2与粉煤灰协同改性水泥基材料性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 50-55.
ZHANG Xiuzhi, LIU Mingle, DU Xiaohan, YANG Xiangzi, ZHOU Zonghui. Synergistic Effect of Nano Silica and Fly Ash on the Cement-based Materials. Materials Reports, 2017, 31(24): 50-55.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.011  或          http://www.mater-rep.com/CN/Y2017/V31/I24/50
1 Sarkar A, Sahani A K, Roy D K S, et al. Compressive strength of sustainable concrete combining blast furnace slag and fly ash[J]. IUP J Struct Eng, 2016,9(1):17.
2 Temuujin J, Ruescher C, Minjigmaa A, et al. Characterization of effloresences of ambient and elevated temperature cured fly ash based geopolymer type concretes[J]. Adv Mater Res, 2016,1139:25.
3 Criado M, Sobrados I, Bastidas J M, et al. Corrosion behaviour of coated steel rebars in carbonated and chloride-contaminated alkali-activated fly ash mortar[J]. Prog Org Coat, 2016,99:12.
4 Mehdipour I, Vahdani M, Amini K, et al. Linking stability characteristics to material performance of self-consolidating concrete-equivalent-mortar incorporating fly ash and metakaolin[J]. Constr Build Mater, 2016,105:206.
5 Chi M. Synthesis and characterization of mortars with circulating fluidized bed combustion fly ash and ground granulated blast-furnace slag[J]. Constr Build Mater, 2016,123:565.
6 Rong Z D, et al. Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites[J]. Cem Concr Compos, 2015,56:25.
7 Fallah S, Nematzadeh M. Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume[J]. Constr Build Mater, 2017,132:170.
8 Chithra S, Kumar S R R S, Chinnaraju K. The effect of colloidal nano-silica on workability, mechanical and durability properties of high performance concrete with copper slag as partial fine aggregate[J]. Constr Build Mater, 2016,113:794.
9 Shah S P, Hou P, Konsta-Gdoutos M S. Nano-modification of cementitious material: Toward a stronger and durable concrete[J]. J Sustainable Cement-Based Mater, 2016,5(1-2): 2.
10 Karoriya D, Gupta R. Performance of concrete with fly ash and kaolin inclusion[J]. Imperial J Interdisciplinary Res, 2016,2(7):179.
11Wang D, Yang P, et al. Effect of SiO2 oligomers on water absorption of cementitious materials[J]. Cem Concr Res, 2016,87:22.
12Shaikh F U A, Supit S W M. Chloride induced corrosion durability of high volume fly ash concretes containing nano particles[J]. Constr Build Mater, 2015,99:208.
13Liu M, Zhou Z, Zhang X, et al. The synergistic effect of nano-silica with blast furnace slag in cement based materials[J]. Constr Build Mater, 2016,126:624.
14Land G, Stephan D. The influence of nano-silica on the hydration of ordinary Portland cement[J]. J Mater Sci, 2012,47(2):1012.
15Xu Xun,Lu Zhongyuan. Effect of nano-silicon dioxide on hydration and hardening of portland cement[J]. J Chin Ceram Soc, 2007,35(4):478(in Chinese).
徐迅, 卢忠远. 纳米二氧化硅对硅酸盐水泥水化硬化的影响[J]. 硅酸盐学报, 2007,35(4):478.
16Zhang M, Li H. Pore structure and chloride permeability of concrete containing nano-particles for pavement[J]. Constr Build Mater, 2011,25(2):608.
17Zahedi M, Ramezanianpour A A, Ramezanianpour A M. Evaluation of the mechanical properties and durability of cement mortars containing nanosilica and rice husk ash under chloride ion penetration[J]. Constr Build Mater, 2015,78:354.18Lu Feifeng, Wu Yong, Gan Lifeng, et al. Effect of fly ash and admixtures on the hydration heat evolution process of portland cement[J]. Mater Rev: Res, 2011,25(3):124(in Chinese).
卢飞峰, 吴勇, 甘莉芬, 等. 掺粉煤灰和不同外加剂对水泥水化放热过程的影响[J]. 材料导报:研究篇, 2011,25(3):124.
19Zhu Hongbo, Wu Kaifan, Li Chen, et al. Nano coating fly ash by fluidized bed reactor vapordeposition (FBR-VD) and its hydration characteristics at early age[J]. J Build Mater, 2016,19(2):229.
20Neville A M. Properties of concrete[M]. 3th Edition. London: ELBS with Longman, 1981:275.
21Asgari H, Ramezanianpour A, Butt H J. Effect of water and nano-silica solution on the early stages cement hydration[J]. Constr Build Mater, 2016,129:12.
[1] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[2] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[3] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[4] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[5] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[6] 何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
[7] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[8] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[9] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[10] 高 伟,赵广杰. 硝酸和硝酸铈铵协同氧化改性木质活性碳纤维[J]. 《材料导报》期刊社, 2018, 32(9): 1507-1512.
[11] 张翔, 甘春雷, 黎小辉, 张辉, 郑开宏, 农登. 氧化铝纤维含量对陶瓷基摩擦材料性能的影响[J]. 材料导报, 2018, 32(20): 3517-3523.
[12] 王德辉, 史才军, 贾煌飞. 石灰石粉和含铝相辅助性胶凝材料的协同作用对混凝土抗碳化性能的影响[J]. 材料导报, 2018, 32(17): 2986-2991.
[13] 钱如胜,张云升,张宇,杨永敢. 水泥-粉煤灰体系早龄期液相离子浓度与电导率的关系[J]. 《材料导报》期刊社, 2018, 32(12): 2066-2071.
[14] 孔 慧,刘卫丽,宋志棠. 一种非球形纳米二氧化硅颗粒制备新方法[J]. 《材料导报》期刊社, 2018, 32(10): 1683-1687.
[15] 李北罡,王 敏. Fe/CTS/AFA复合材料对染料的高效吸附[J]. 《材料导报》期刊社, 2018, 32(10): 1606-1611.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed