Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (9): 1507-1512    https://doi.org/10.11896/j.issn.1005-023X.2018.09.015
  材料综述 |
硝酸和硝酸铈铵协同氧化改性木质活性碳纤维
高 伟1,2,赵广杰1
1 北京林业大学材料科学与技术学院,北京 100083;
2 广西大学资源环境与材料学院,南宁 530004
Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate
GAO Wei1,2, ZHAO Guangjie1
1 College of Materials Science and Technology, Beijing Forestry University, Beijing 100083;
2 College of Resources, Environment and Materials, Guangxi University, Nanning 530004
下载:  全 文 ( PDF ) ( 1185KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用0.005~0.050 mol/L的硝酸铈铵,协同1.0~7.0 mol/L的硝酸,在23~83 ℃条件下,对木质活性碳纤维(WACF)浸渍5 h进行氧化改性。通过XPS、RAMAN、水吸附和汞吸附表征其表面和结构性能。结果表明,改性后WACF的氧/碳比平均值为0.160,酚基和醇基含量提高,羧酯含量与氧化强度总体成反比。样品表面石墨化程度降低,样品芯部的石墨化程度提高。协同改性后,WACF孔体积降低,水吸附的比表面积显著提升。WACF对汞的吸附能力和水吸附比表面积与氧原子浓度呈线性关系。硝酸可以增加官能团含量,对结构影响较小。硝酸铈铵在增加官能团含量的同时,对结构和孔径有一定调控作用,对不同直径的吸附对象有一定的选择性,拓展了WACF的应用范围。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高 伟
赵广杰
关键词:  木质活性碳纤维  硝酸铈铵  表面氧化改性  水吸附  协同改性    
Abstract: The wooden activated carbon fiber(WACF) was immersed 5 h for oxidative modification, 0.005 mol/L to 0.050 mol/L ammonium ceric nitrate and 1.0 mol/L to 7.0 mol/L nitric acid were added, the modification temperature was 23 ℃ to 83 ℃. The surface and structural properties were characterized by XPS, RAMAN, water vapor adsorption and mercury adsorption. The results showed that the average value of oxygen/carbon ratio of modified WACF was 0.160, the content of phenolic groups and alcohol groups increased, it presented an inverse correlation between the content of carboxyeste and the intensity of oxidation. The degree of graphitization on the sample surface reduced slightly, and the degree of graphitization of the sample core increased. The pore volume decreased after synergistic modification, the specific surface area for water adsorption increased significantly. The adsorption capacity for mercury and the specific surface area for water adsorption were linearly related to the concentration of oxygen atoms. Nitric acid can increase the content of functional groups, and has little effect on the structure. While increasing the content of the functional group, ceric ammonium nitrate has a certain adjustment on the structure and pore, and definite selectivity for the adsorbed objects of diffe-rent diameters, which extends the application range of WACF.
Key words:  wooden active carbon fiber    ceric ammonium nitrate    surface oxidation modification    water adsorption    synerge-tic modification
               出版日期:  2018-05-10      发布日期:  2018-07-06
ZTFLH:  TQ424.1+9  
  TQ351.21  
基金资助: 国家科技支撑计划项目子专题(2015BAD14B00603)
通讯作者:  赵广杰:通信作者,男,教授,博士研究生导师,研究方向为木材学 E-mail:zhaows@bjfu.edu.cn   
作者简介:  高伟:男,1981年生,博士研究生,副教授,研究方向为木材学 E-mail:galaxy@gxu.edu.cn
引用本文:    
高 伟,赵广杰. 硝酸和硝酸铈铵协同氧化改性木质活性碳纤维[J]. 《材料导报》期刊社, 2018, 32(9): 1507-1512.
GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate. Materials Reports, 2018, 32(9): 1507-1512.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.09.015  或          http://www.mater-rep.com/CN/Y2018/V32/I9/1507
1 Prasad G K, Singh B, Batra K, et al.Comparative evaluation of modified whetlerites and impregnated carbons for sulphur mustard degradation[J].Carbon,2010,48(1):2.
2 Jiang L J, Liu Q C, Zhao Q, et al. Promotional effect of Ce on the SCR of NO with NH3 at low temperature over MnO(x) supported by nitric acid-modified activated carbon[J].Research on Chemical Intermediates,2018,44(3):1729.
3 Yao S, Yang Y, Song S, et al.Preparation, characterization and photocatalytic activity of cerium-doped titanium dioxide supported on activated carbon fiber composite[J].Indian Journal of Chemistry,2014,53(6):665.
4 Chen S X, Chen J L,Wu Q Y. Chemical structure modification of activated carbon fibers by cerous nitrate [J].New Carbon Materials,2006,21(3):206(in Chinese).
陈水挟,陈建良,武清毓.利用铈盐改性修饰活性炭纤维结构[J].新型炭材料,2006,21(3):206.
5 Wang G J,Liu Y,Fu X T,et al. Preparation of cerium supported on modified activated carbon as adsorbent and its application in desulfurization[J].Petrochemical Technology,2014,43(6):625(in Chinese).
王广建,刘影,付信涛,等.改性活性炭负载铈吸附剂的制备及其脱硫性能[J].石油化工,2014,43(6):625.
6 Sarkisov L, Centineo A, Brandani S. Molecular simulation and experiments of water adsorption in a high surface area activated carbon: Hysteresis, scanning curves and spatial organization of water clusters[J].Carbon,2017,118:127.
7 Liu L, Tan S, Horikawa T, et al.Water adsorption on carbon—A review[J].Advances in Colloid and Interface Science,2017,250:64.
8 Charriere D, Behra P. Water sorption on coals[J].Journal of Colloid and Interface Science,2010,344(2):460.
9 Abiko H. Adsorption and desorption behavior of water and organic vapor of allophanic soil-templated porous carbon materials[J].Journal of the Ceramic Society of Japan,2012,120(1408):603.
10 Soares L C, Egreja Filho F B, Windmoller C C, et al.Mercury quantification in soils using thermal desorption and atomic absorption spectrometry: Proposal for an alternative method of analysis[J].Revista Brasileira De Ciencia Do Solo,2015,39(4):1100.
11 Ribeiro R F L, Germano A.Development and validation of a method for the determination of Hg in animal tissues (equine muscle, bovine kidney and swine kidney, and poultry muscle) by direct mercury analysis (DMA)[J].Microchemical Journal,2015,121:237.
12 Graci S, Collura R, Cammilleri G, et al.Mercury accumulation in mediterranean fish and cephalopods species of sicilian coasts: Correlation between pollution and the presence of anisakis parasites[J].Natural Product Research,2017,31(10):1156.
13 Ferlin S, Fostier A H, Melendez-Perez J J. A very simple and fast analytical method for atmospheric particulate-bound mercury determination[J].Analytical Methods,2014,6(13):4537.
14 Ma X, Zhao G.Variations in the microstructure of carbon fibers prepared from liquefied wood during carbonization[J].Journal of Applied Polymer Science,2011,121(6):3525.
15 Liu WJ, Zhao G J.Effect of temperature and time on microstructure and surface functional groups of activated carbon fibers prepared from liquefied wood[J].Bioresources,2012,7(4):5552.
16 Shimodaira N, Masui A.Raman spectroscopic investigations of activated carbon materials[J].Journal of Applied Physics,2002,92(2):902.
17 Wang Z, Yang F L, Zhang J, et al. Impact of EGR rate on soot nanostructure from a diesel engine fueled with biodiesel[J].Spectroscopy and Spectral Analysis,2017,37(6):1973.
18 Macedo J S, Otubo L, Ferreira O P, et al.Biomorphic activated po-rous carbons with complex microstructures from lignocellulosic residues[J].Microporous and Mesoporous Materials,2008,107(3):276.
19 Hefti M, Joss L, Marx D, et al. An experimental and modeling study of the adsorption equilibrium and dynamics of water vapor on activated carbon[J].Industrial & Engineering Chemistry Research,2015,54(48):12165.
20 Horikawa T, Muguruma T, Do D D, et al. Scanning curves of water adsorption on graphitized thermal carbon black and ordered mesoporous carbon[J].Carbon,2015,95:137.
21 Mamontov E, Yue Y, Bahadur J, et al.Hydration level dependence of the microscopic dynamics of water adsorbed in ultramicroporous carbon[J].Carbon,2017,111:705.
22 Ren J, Ye S, Chen J, et al.Research on surface properties of modified activated carbon fiber and its mercury adsorption performance[J].Acta Scientiae Circumstantiae,2010,30(7):1410.
23 Huang Z H, Kang F Y, Wu H, et al. Adsorption of benzene and methylethyl-ketone vapors at low concentration by wet oxidized po-rous carbons[J].J Tsinghua University (Science & Technology),2000,40(10):111(in Chinese)
黄正宏,康飞宇,吴慧,等.湿氧化改性多孔炭对低浓度苯和丁酮蒸汽的吸附[J].清华大学学报(自然科学版),2000,40(10):111.
[1] 高 伟,赵广杰. 硝酸表面氧化改性木质活性碳纤维[J]. 《材料导报》期刊社, 2018, 32(10): 1688-1694.
[2] 张秀芝,刘明乐,杜笑寒,杨祥子,周宗辉. 纳米SiO2与粉煤灰协同改性水泥基材料性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 50-55.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed