Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 101-106    https://doi.org/10.11896/j.issn.1005-023X.2017.010.021
  材料研究 |
由液化物树脂制备多孔碳纳米纤维及其表征*
陶磊1,郑云武1,2,邸明伟1,张彦华1,郑志锋2
1 东北林业大学材料科学与工程学院, 哈尔滨 150040;
2 西南林业大学材料科学与工程学院,云南省生物质高效利用工程实验室;
云南省高校生物质化学炼制与合成重点实验室, 昆明 650224
Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization
TAO Lei1, ZHENG Yunwu1,2, DI Mingwei1, ZHANG Yanhua1, ZHENG Zhifeng2
1 College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040;
2 Engineering Laboratory for Highly-efficient Utilization of Biomass, Yunnan Province;
University Key Laboratory for Biomass Chemical Refinery & Synthesis, Yunnan Province;
College of Materials Engineering, Southwest Forestry University, Kunming 650224
下载:  全 文 ( PDF ) ( 1365KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以壳粉为原料,在碱性条件下制备液化物树脂(LPF),经静电纺丝、固化、碳化得到多孔碳纳米纤维(PCNF)。探讨了聚乙烯醇(PVA)用量对纺丝液特性及纤维形貌的影响。同时,采用傅里叶变换红外光谱(FTIR)、热重分析仪(TG)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、全自动比表面积及孔隙分析仪(BET)等方法对不同碳化温度下的样品进行表征。结果表明:少量PVA可以明显提高LPF的纺丝性,且随PVA用量的增加,纤维的形貌更规整、直径更小;随着碳化温度的升高,LPF/PVA纤维逐渐裂解,多数官能团消失,基体为多苯稠环结构;同时,层间距d(002)逐渐减小,平面尺寸Lc和Lc/d(002)增加,纤维内部的类石墨结构逐渐向更规整、有序的石墨微晶结构转变;当碳化温度为800 ℃时,LPF/PVA的含碳量达55%以上,随着PVA用量的增加,纤维的比表面积明显增大且多以微孔为主,当PVA用量为8%时,得到比表面积为590 m2/g的多孔碳纳米纤维。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陶磊
郑云武
邸明伟
张彦华
郑志锋
关键词:  液化物树脂  静电纺丝  多孔碳纳米纤维    
Abstract: Porous carbon nanofiber (PCNF) was prepared through electrospinning, curing and carbonization with liquid phenolic resin and polyvinyl alcohol (PVA) as raw materials. The influence of PVA content on the properties of electrospun solution and fiber morphology was discussed. The obtained fibers were characterized by FTIR, TG, SEM, XRD and BET techniques. The results showed that a small amount of PVA could obviously improve the spin-ability of LPF. With the increase of PVA content, the morphology of fiber is more regular and the diameter is smaller. With the carbonization temperature increased, the LPF/PVA fiber pyrolysed gradually, most functional groups were eliminated, and the matrix turned into benzene fused ring structure. At the same time, the value of d(002) decreased, while the values of Lc and Lc/d(002) increased, which implied that arrangement of graphite crystal among of LPF/PVA fiber layers was regularly piled up, and both the carbon net structure and the graphitoidal degree of fiber were deve-loped and improved remarkably. When the carbonization temperature was 800 ℃,the carbon content of LPF/PVA fiber was higher than 55%. The specific surface and pore volume of LPF/PVA fiber increased gradually with the PVA content and the main structure was microporous. When the content of PVA was 8%, a PCNF structure with a surface area of 590 m2/g could be obtained.
Key words:  liquid phenolic resin    electrospinning    porous carbon nanofiber
                    发布日期:  2018-05-08
ZTFLH:  TQ351  
基金资助: *云南省应用基础研究重点项目(2014FA034);国家自然科学基金(31670599;31160147)
通讯作者:  郑志锋,男,1975年生,博士,教授,博士研究生导师,研究方向为生物质能源与材料E-mail:zhengzhifeng666@163.com   
作者简介:  陶磊:男,1990年生,博士研究生,研究方向为生物质基材料的制备及应用
引用本文:    
陶磊,郑云武,邸明伟,张彦华,郑志锋. 由液化物树脂制备多孔碳纳米纤维及其表征*[J]. 材料导报编辑部, 2017, 31(10): 101-106.
TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization. Materials Reports, 2017, 31(10): 101-106.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.021  或          http://www.mater-rep.com/CN/Y2017/V31/I10/101
1 Naik J R, Bikshapathi M, Singh R K, et al. Preparation, surface functionalization, and characterization of carbon micro fibers for adsorption applications [J]. Environmental Eng Sci,2011,28(10):725.
2 Teng M, Qiao J, Li F, et al. Electrospun mesoporous carbon nanofibers produced from phenolic resin and their use in the adsorption of large dye molecules [J]. Carbon,2012,50(8):2877.
3 Lin C L, Cheng Y H, Liu Z S, et al. Metal catalysts supported on activated carbon fibers for removal of polycyclic aromatic hydrocarbons from incineration flue gas [J]. J Hazard Mater,2011,197:254.
4 Chen Y, Yue M, Huang Z H, et al. Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization [J]. Chem Eng J,2014,252:30.
5 Arami-Niya A, Daud W M A W, Mjalli F S, et al. Production of microporous palm shell based activated carbon for methane adsorption: Modeling and optimization using response surface methodology [J]. Chem Eng Res Des,2012,90(6):776.
6 Suzuki K, Matsumoto H, Minagawa M, et al. Preparation of carbon fiber fabrics from phenolic resin by electrospray deposition [J]. Polym J,2007,39(11):1128.
7 Ma C, Song Y, Shi J, et al. Phenolic-based carbon nanofiber webs prepared by electrospinning for supercapacitors [J]. Mater Lett,2012,76:211.
8 Nan D, Liu J, Ma W. Electrospun phenolic resin-based carbon ultrafine fibers with abundant ultra-small micropores for CO2 adsorption [J]. Chem Eng J,2015,276:44.
9 Hu S, Hsieh Y L. Ultrafine microporous and mesoporous activated carbon fibers from alkali lignin [J]. J Mater Chem A,2013,1(37):11279.
10 You X, Koda K, Yamada T, et al. Preparation of electrode for electric double layer capacitor from electrospun lignin fibers [J]. Holzforschung,2015,69(9):1097.
11 Fong H, Chun I, Reneker D H. Beaded nanofibers formed during electrospinning [J]. Polymer,1999,40(16):4585.
12 Oroumei A, Fox B, Naebe M. Thermal and rheological characteristics of biobased carbon fiber precursor derived from low molecular weight organosolv lignin [J]. ACS Sustainable Chem Eng,2015,3(4):758.
13 Bommier C, Luo W, Gao W Y, et al. Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements [J]. Carbon,2014,76(9):165.
14 Frank E, Hermanutz F, Buchmeiser M R. Carbon fibers: Precursors, manufacturing, and properties [J]. Macromolecular Mater Eng,2012,297(6):493.
15 Li D N, Ma X J. Preparation and characterization of activated carbon fibers from liquefied wood [J]. Cellulose,2013,20(4):1649.
[1] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[2] 陈莹, 侯翼, 成来飞. 针对静电纺丝SiC纤维纳米化的溶液参数优化设计[J]. 材料导报, 2019, 33(10): 1619-1623.
[3] 陈曼, 何明, 郭妍婷, 尹国强. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 《材料导报》期刊社, 2018, 32(8): 1218-1223.
[4] 张雪荣, 胡银春, 席少晖, 王兆伟, 战岩, 黄棣, 胡超凡, 魏延. 静电纺β-环糊精/石墨烯载银抗菌纤维膜的制备与表征[J]. 《材料导报》期刊社, 2018, 32(4): 545-548.
[5] 李婷婷, 闫梦雪, 吴宗翰, 姜茜, 林佳弘. 动态线性电极静电纺PVA纳米纤维的可纺性[J]. 材料导报, 2018, 32(24): 4363-4369.
[6] 何明,窦瑶,陈曼,尹国强,崔英德,陈循军. 羽毛角蛋白/PVA复合纳米纤维膜的制备及表征[J]. 《材料导报》期刊社, 2018, 32(2): 198-202.
[7] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[8] 李延安, 杨汝禄, 张华, 孙海滨, 司维蒙, 李蛟. 煅烧温度对铁酸铋纤维形貌及性能的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2340-2344.
[9] 孟佳意, 县泽宇, 李昕, 张德权. 光子晶体纤维的制备及应用*[J]. 《材料导报》期刊社, 2017, 31(5): 106-111.
[10] 戴剑锋,田西光,闫兴山,李维学,王青. 静电纺丝法制备的Co0.6Ni0.3Cu0.1Fe2O4和Co0.6Ni0.3Zn0.1Fe2O4纳米纤维的结构及磁性能*[J]. 材料导报编辑部, 2017, 31(22): 30-34.
[11] 王洪杰, 王闻宇, 王赫, 金欣, 李嘉禄, 林童, 朱正涛. 用于油水分离的静电纺纳米纤维膜研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 144-151.
[12] 鲍艳, 封彩萍. 亚微级氧化锌空心球的制备及其光催化性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 42-49.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed