Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 102-108    https://doi.org/10.11896/j.issn.1005-023X.2017.018.021
  材料研究 |
纳米SiC与PI填充改性PTFE复合材料的摩擦磨损性能*
米翔1, 龚俊1, 曹文翰1, 王宏刚2, 任俊芳2
1 兰州理工大学机电工程学院,兰州 730050;
2 中国科学院兰州化学物理研究所固体润滑国家重点实验室,兰州 730000
Tribological Behavior of Nano-SiC/PI Reinforced PTFE Composites
MI Xiang1, GONG Jun1, CAO Wenhan1, WANG Honggang2, REN Junfang2
1 School of Mechanical & Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050;
2 State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000
下载:  全 文 ( PDF ) ( 2718KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以纳米碳化硅(Nano-SiC)和聚酰亚胺(PI)为填料,经过机械共混、冷压成型和烧结等工艺制备Nano-SiC与PI共同填充改性聚四氟乙烯(PTFE)复合材料。利用MRH-3型环-块摩擦实验机研究不同实验条件下复合材料的摩擦磨损性能并记录磨损表面温度变化。通过扫描电镜观察试样磨损表面和转移膜形貌,分析其磨损机理。结果表明:纳米粒子含量、载荷和速度的变化会引起磨损表面温度发生变化,影响复合材料的摩擦磨损特性,复合材料磨损表面形貌和转移膜形貌也随之改变;随着纳米粒子含量增加,摩擦温升更快进入平稳阶段,有利于降低复合材料的磨损率;载荷由100 N增加至400 N,速度由1 m/s增加至4 m/s时,复合材料的摩擦磨损特性大幅下降,磨损表面形貌和转移膜形貌有显著变化,重载和高速条件下复合材料的磨损率高;环境温度在室温到135 ℃变化时复合材料的摩擦性能变化不明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
米翔
龚俊
曹文翰
王宏刚
任俊芳
关键词:  纳米碳化硅  聚酰亚胺  聚四氟乙烯  摩擦磨损性能  转移膜  温度    
Abstract: Nanometer SiC(Nano-SiC)particles and polyimide (PI) synergetic filled polytetrafluoroethylene (PTFE) compo-sites were prepared by high speed mechanical mixer, cold press molding and sintering with temperature control program. The tribological behavior of composites and the worn surface temperature was tested by a MRH-3 block-on-ring friction and wear tester under different conditions. The worn surface and transfer film were inspected and analyzed with scanning electronic microscopy (SEM). The results demonstrated that the change of the worn surface temperature, the tribological behavior, the worn surface morphology and the transfer film of composites related to the content of nano-SiC, load and sliding velocity. With the increase content of nano-particles, the friction temperature rose more quickly into the steady stage, which was helpful to reduce the wear rate of the compo-site. When the load increased from 100 N to 400 N and the velocity increased from 1 m/s to 4 m/s, the tribological behavior of composites deteriorated quickly, the surface morphology and the transfer film changed significantly. The wear rate of the composites under heavy and high velocity conditions was high. The change of tribological behavior are not obvious within the ambient temperature to 135 ℃.
Key words:  nanometer SiC    polyimide    polytetrafluoroethylene    tribological behavior    transfer film    temperature
               出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51165022)
通讯作者:  龚俊:通讯作者,男,1963年生,硕士,研究员,研究方向为斯特林发动机密封技术 E-mail:gongjjdxy@sohu.com   
作者简介:  米翔:男,1990年生,硕士研究生,研究方向为密封材料 E-mail:mix349189060@163.com
引用本文:    
米翔, 龚俊, 曹文翰, 王宏刚, 任俊芳. 纳米SiC与PI填充改性PTFE复合材料的摩擦磨损性能*[J]. 《材料导报》期刊社, 2017, 31(18): 102-108.
MI Xiang, GONG Jun, CAO Wenhan, WANG Honggang, REN Junfang. Tribological Behavior of Nano-SiC/PI Reinforced PTFE Composites. Materials Reports, 2017, 31(18): 102-108.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.021  或          http://www.mater-rep.com/CN/Y2017/V31/I18/102
1 Gao Gui. The reasearch on stirling engine piston rod sealing structure and materials [D]. Lanzhou: Lanzhou University of Technology, 2012(in Chinese).
高贵. 斯特林发动机活塞杆密封结构与材料研究[D]. 兰州:兰州理工大学, 2012.
2 金东寒. 斯特林发动机技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2009.
3 Sawyer W G, Freudenberg K D, Bhimaraj P, et al. A study on the friction and wear behavior of PTFE filled with alumina nanoparticles[J]. Wear, 2003,254(5-6):573.
4 Bijwe J, Sen S, Ghosh A. Influence of PTFE content in PEEK-PTFE blends on mechanical properties and tribo-performance in various wear modes[J]. Wear, 2005,258(10):1536.
5 Khare H S, Moore A C, Haidar D R, et al. Interrelated effects of temperature and environment on wear and tribochemistry of an ultralow wear PTFE composite[J]. J Phys Chem C, 2015,119(29):16518.
6 Ye J, Khare H S, Burris D L. Transfer film evolution and its role in promoting ultra-low wear of a PTFE nanocomposite[J]. Wear, 2013,297(s1-2):1095.
7 Ye J, Moore A C, Burris D L. Transfer film tenacity: A case study using ultra-low-wear alumina-PTFE[J]. Tribol Lett, 2015,59(3):1.
8 Krick B A, Ewin J J, Mccumiskey E J. Tribofilm formation and run-in behavior in ultra-low-wearing polytetrafluoroethylene (PTFE) and alumina nanocomposites[J]. Tribol Trans, 2014,57(6):1058.
9 Burris D L, Sawyer W G. Tribological sensitivity of PTFE/alumina nanocomposites to a range of traditional surface finishes[J]. Tribol Trans, 2005,48(2):147.
10Pitenis A A, Harris K L, Junk C P, et al. Ultralow wear PTFE and alumina composites: It is all about tribochemistry[J]. Tribol Lett, 2015,57(2):1.
11Lai S, Yue L, Li T, et al. An investigation of friction and wear behaviors of polyimide/attapulgite hybrid materials[J]. Macromol Mater Eng, 2005,290(3):195.
12Zheng F, Zhang X, Zhao G, et al. Friction and wear of fiber reinforced polyimide composites in electron or proton irradiation[J]. J Appl Polym Sci, 2014,131(18):9327.
13Mu L, Zhu J, Fan J, et al. Self-lubricating polytetrafluoroethylene/polyimide blends reinforced with zinc oxide nanoparticles[J]. J Nanomater, 2015,2015:1.
14Urueña J M, Pitenis A A, Harris K L, et al. Evolution and wear of fluoropolymer transfer films[J]. Tribol Lett, 2015,57(1):9.
15Ye J, Khare H S, Burris D L. Quantitative characterization of solid lubricant transfer film quality[J]. Wear, 2014,316(1-2):133.
16Wang Q H, Xu J, Shen W, et al. The effect of nanometer SiC filler on the tribological behavior of PEEK[J]. Wear, 1997,209(1-2):316.
17Zhang G, Chang L, Schlarb A K. The roles of nano-SiO2 particles on the tribological behavior of short carbon fiber reinforced PEEK[J]. Compos Sci Technol, 2009,69(7):1029.
18Wang J, Hu X G, Tian M, et al. Study on mechanical and tribological property of nanometer ZrO2-filled polyoxymethylene composites[J]. Polymer-Plastics Technol Eng, 2007,46(5):469.
19Yang Dongya, Wang Yue, Gong Jun, et al. Tribological perfor-mance of different nanoparticles reinforced PPS-PTFE blends[J]. J Funct Mater, 2014(6):6011(in Chinese).
杨东亚, 王月, 龚俊, 等. 不同纳米填料增强PPS-PTFE共混物的摩擦磨损性能分析[J]. 功能材料, 2014(6):6011.
20Lu Qin, Zhang Jing, He Chunxia. Frictional and mechanical properties of PTFE composites filled with nano-SiC[J]. J Mater Sci Eng, 2008,26(5):743(in Chinese).
路琴, 张静, 何春霞. 纳米SiC改性PTFE复合材料的力学与摩擦磨损性能[J]. 材料科学与工程学报, 2008,26(5):743.
21Yang Dongya, Dong Yue, Gong Jun. The tribology behaviors of PEEK filled PTFE composites [J]. Lubricat Eng, 2013, 38(10):60(in Chinese).
杨东亚, 董悦, 龚俊. 聚醚醚酮填充聚四氟乙烯摩擦学性能[J]. 润滑与密封, 2013,38(10):60.
[1] 杨金祥, 石爽, 姜大川, 李旭, 李鹏廷, 谭毅, 姚玉杰, 池明, 张润德, 张建帅. 多晶硅定向凝固过程中温度对凝固速率的影响[J]. 材料导报, 2019, 33(z1): 28-32.
[2] 白强来, 付佺, 潘成刚, 王林德, 慕朝阳. 高延伸率柔性耐烧蚀涂料拉伸性能分析[J]. 材料导报, 2019, 33(z1): 485-487.
[3] 陈营, 周红梅, 陈德平, 慕东, 魏燕红, 叶远新. TAP-BPDA超支化聚酰亚胺的制备及性能[J]. 材料导报, 2019, 33(z1): 491-494.
[4] 侯艳, 程从前, 赵杰, 冯雪, 李然, 闵小华. 拉应力对2205双相不锈钢临界点蚀温度和点蚀行为的影响[J]. 材料导报, 2019, 33(6): 1022-1026.
[5] 陈志国, 方亮, 吴吉文, 张海筹, 马文静, 白月龙. 半固态挤压高硅铝合金二次加热的微观组织演变[J]. 材料导报, 2019, 33(6): 1006-1010.
[6] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[7] 周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
[8] 产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
[9] 卫芳彬, 张雷阳, 王颖, 李洋, 刘岗. 二氧化铈掺杂钛酸铋钠基陶瓷的高储能密度及温度稳定性[J]. 材料导报, 2019, 33(16): 2648-2653.
[10] 向红亮, 刘春育, 邓丽萍, 张伟, 任建斌. 固溶温度对节约型双相不锈钢组织及性能的影响[J]. 材料导报, 2019, 33(16): 2759-2764.
[11] 王中平, 杨浩宇, 赵亚婷, 徐玲琳. 不同养护温度下氯化钠对铝酸盐水泥水化的影响[J]. 材料导报, 2019, 33(14): 2343-2347.
[12] 江旭, 马煜林, 刘越. 回火温度对CB2钢的含硼M23C6相析出及力学性能的影响[J]. 材料导报, 2019, 33(12): 2062-2066.
[13] 祁渊, 龚俊, 杨东亚, 王宏刚, 高贵, 任俊芳, 陈生圣. 纳米Al2O3填料增强PEEK-PTFE复合材料基于环-块摩擦结构的摩擦过程研究[J]. 材料导报, 2019, 33(10): 1756-1761.
[14] 陆亮亮, 刘雪峰, 张少明, 徐骏, 贺会军, 盛艳伟. 高频感应熔化金属丝气雾化制备球形钛粉[J]. 《材料导报》期刊社, 2018, 32(8): 1267-1270.
[15] 黄文成, 张锦国, 袁军, 刘江文. Mg/Nb复合薄膜的结构调控及其对脱氢温度的影响[J]. 《材料导报》期刊社, 2018, 32(7): 1084-1087.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed